Effective asthma disease prediction using naive Bayes — Neural network fusion technique

Saloni Aneja, Sangeeta Lal
{"title":"Effective asthma disease prediction using naive Bayes — Neural network fusion technique","authors":"Saloni Aneja, Sangeeta Lal","doi":"10.1109/PDGC.2014.7030730","DOIUrl":null,"url":null,"abstract":"Asthma is a lung disease caused by the inflammation and narrowing of the airways that causes recurrent attacks of breathlessness and wheezing, and often can be life-threatening. Around 15-20 million people are suffering from asthma in India[1]. This paper aims at analyzing various data mining techniques for the prediction of asthma. The observations show that the fusion approach of naive bayes and neural network proved to be the best among classification algorithms in the diagnosis of asthma. This methodology is evaluated using 1024 raw data obtained from a city hospital. The proposed approach helps patients in their diagnosis of asthma.","PeriodicalId":311953,"journal":{"name":"2014 International Conference on Parallel, Distributed and Grid Computing","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Parallel, Distributed and Grid Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PDGC.2014.7030730","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

Asthma is a lung disease caused by the inflammation and narrowing of the airways that causes recurrent attacks of breathlessness and wheezing, and often can be life-threatening. Around 15-20 million people are suffering from asthma in India[1]. This paper aims at analyzing various data mining techniques for the prediction of asthma. The observations show that the fusion approach of naive bayes and neural network proved to be the best among classification algorithms in the diagnosis of asthma. This methodology is evaluated using 1024 raw data obtained from a city hospital. The proposed approach helps patients in their diagnosis of asthma.
应用朴素贝叶斯-神经网络融合技术对哮喘疾病进行有效预测
哮喘是一种由炎症和气道狭窄引起的肺部疾病,会导致反复发作的呼吸困难和喘息,通常会危及生命。印度大约有1500万到2000万人患有哮喘。本文旨在分析用于哮喘预测的各种数据挖掘技术。结果表明,朴素贝叶斯与神经网络的融合方法是哮喘诊断的最佳分类算法。使用从一家城市医院获得的1024份原始数据对该方法进行了评估。提出的方法有助于患者对哮喘的诊断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信