Homological mirror symmetry for log Calabi–Yau surfaces

P. Hacking, Ailsa Keating
{"title":"Homological mirror symmetry for log\nCalabi–Yau surfaces","authors":"P. Hacking, Ailsa Keating","doi":"10.2140/gt.2022.26.3747","DOIUrl":null,"url":null,"abstract":"Given a log Calabi-Yau surface $Y$ with maximal boundary $D$ and distinguished complex structure, we explain how to construct a mirror Lefschetz fibration $w: M \\to \\mathbb{C}$, where $M$ is a Weinstein four-manifold, such that the directed Fukaya category of $w$ is isomorphic to $D^b \\text{Coh}(Y)$, and the wrapped Fukaya category $\\mathcal{W} (M)$ is isomorphic to $D^b \\text{Coh}(Y \\backslash D)$. We construct an explicit isomorphism between $M$ and the total space of the almost-toric fibration arising in the work of Gross-Hacking-Keel; when $D$ is negative definite this is expected to be the Milnor fibre of a smoothing of the dual cusp of $D$. We also match our mirror potential $w$ with existing constructions for a range of special cases of $(Y,D)$, notably in work of Auroux-Katzarkov-Orlov and Abouzaid.","PeriodicalId":254292,"journal":{"name":"Geometry & Topology","volume":"129 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry & Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/gt.2022.26.3747","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

Abstract

Given a log Calabi-Yau surface $Y$ with maximal boundary $D$ and distinguished complex structure, we explain how to construct a mirror Lefschetz fibration $w: M \to \mathbb{C}$, where $M$ is a Weinstein four-manifold, such that the directed Fukaya category of $w$ is isomorphic to $D^b \text{Coh}(Y)$, and the wrapped Fukaya category $\mathcal{W} (M)$ is isomorphic to $D^b \text{Coh}(Y \backslash D)$. We construct an explicit isomorphism between $M$ and the total space of the almost-toric fibration arising in the work of Gross-Hacking-Keel; when $D$ is negative definite this is expected to be the Milnor fibre of a smoothing of the dual cusp of $D$. We also match our mirror potential $w$ with existing constructions for a range of special cases of $(Y,D)$, notably in work of Auroux-Katzarkov-Orlov and Abouzaid.
logCalabi-Yau曲面的同调镜像对称
给定一个具有极大边界$D$的log Calabi-Yau曲面$Y$和不同的复杂结构,我们解释了如何构造一个镜像Lefschetz纤维$w: M \到$ mathbb{C}$,其中$M$是一个Weinstein四流形,使得$w$的有向Fukaya范畴同构于$D^b \text{Coh}(Y)$,而包装的Fukaya范畴$\mathcal{w}(M)$同构于$D^b \text{Coh}(Y \反斜线D)$。我们构造了$M$与Gross-Hacking-Keel工作中产生的近环振动的总空间之间的显同构;当$D$为负定时,预期这是$D$的双尖平滑的米尔诺纤维。我们还将我们的镜像势$w$与一系列特殊情况$(Y,D)$的现有结构相匹配,特别是在Auroux-Katzarkov-Orlov和Abouzaid的工作中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信