Classification of Polar-Thermal Eigenfaces using Multilayer Perceptron for Human Face Recognition

M. Bhowmik, D. Bhattacharjee, M. Nasipuri, D. K. Basu, M. Kundu
{"title":"Classification of Polar-Thermal Eigenfaces using Multilayer Perceptron for Human Face Recognition","authors":"M. Bhowmik, D. Bhattacharjee, M. Nasipuri, D. K. Basu, M. Kundu","doi":"10.1109/ICIINFS.2008.4798431","DOIUrl":null,"url":null,"abstract":"This paper presents a novel approach to handle the challenges of face recognition. In this work thermal face images are considered, which minimizes the affect of illumination changes and occlusion due to moustache, beards, adornments etc. The proposed approach registers the training and testing thermal face images in polar coordinate, which is capable to handle complicacies introduced by scaling and rotation. Polar images are projected into eigenspace and finally classified using a multi-layer perceptron. In the experiments we have used Object Tracking and Classification Beyond Visible Spectrum (OTCBVS) database benchmark thermal face images. Experimental results show that the proposed approach significantly improves the verification and identification performance and the success rate is 97.05%.","PeriodicalId":429889,"journal":{"name":"2008 IEEE Region 10 and the Third international Conference on Industrial and Information Systems","volume":"124 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Region 10 and the Third international Conference on Industrial and Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIINFS.2008.4798431","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

This paper presents a novel approach to handle the challenges of face recognition. In this work thermal face images are considered, which minimizes the affect of illumination changes and occlusion due to moustache, beards, adornments etc. The proposed approach registers the training and testing thermal face images in polar coordinate, which is capable to handle complicacies introduced by scaling and rotation. Polar images are projected into eigenspace and finally classified using a multi-layer perceptron. In the experiments we have used Object Tracking and Classification Beyond Visible Spectrum (OTCBVS) database benchmark thermal face images. Experimental results show that the proposed approach significantly improves the verification and identification performance and the success rate is 97.05%.
基于多层感知机的极热特征人脸分类
本文提出了一种新的方法来处理人脸识别的挑战。在这项工作中,热人脸图像被考虑,它最大限度地减少了由于胡须、胡须、装饰品等引起的光照变化和遮挡的影响。该方法对训练和测试热人脸图像进行极坐标注册,能够处理缩放和旋转带来的复杂性。将极坐标图像投影到特征空间中,最后使用多层感知器进行分类。在实验中,我们使用了超可见光谱(OTCBVS)数据库基准热人脸图像。实验结果表明,该方法显著提高了验证和识别性能,成功率为97.05%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信