Efficient Malware Packer Identification Using Support Vector Machines with Spectrum Kernel

Tao Ban, Ryoichi Isawa, Shanqing Guo, D. Inoue, K. Nakao
{"title":"Efficient Malware Packer Identification Using Support Vector Machines with Spectrum Kernel","authors":"Tao Ban, Ryoichi Isawa, Shanqing Guo, D. Inoue, K. Nakao","doi":"10.1109/ASIAJCIS.2013.18","DOIUrl":null,"url":null,"abstract":"Packing is among the most popular obfuscation techniques to impede anti-virus scanners from successfully detecting malware. Efficient and automatic packer identification is an essential step to perform attack on ever increasing malware databases. In this paper we present a p-spectrum induced linear Support Vector Machine to implement an automated packer identification with good accuracy and scalability. The efficacy and efficiency of the method is evaluated on a dataset composed of 3228 packed files created by 25 packers with near-perfect identification results reported. This method can help to improve the scanning efficiency of anti-virus products and ease efficient back-end malware research.","PeriodicalId":286298,"journal":{"name":"2013 Eighth Asia Joint Conference on Information Security","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Eighth Asia Joint Conference on Information Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASIAJCIS.2013.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Packing is among the most popular obfuscation techniques to impede anti-virus scanners from successfully detecting malware. Efficient and automatic packer identification is an essential step to perform attack on ever increasing malware databases. In this paper we present a p-spectrum induced linear Support Vector Machine to implement an automated packer identification with good accuracy and scalability. The efficacy and efficiency of the method is evaluated on a dataset composed of 3228 packed files created by 25 packers with near-perfect identification results reported. This method can help to improve the scanning efficiency of anti-virus products and ease efficient back-end malware research.
基于谱核支持向量机的恶意软件高效识别
打包是最流行的混淆技术之一,以阻止反病毒扫描仪成功检测恶意软件。高效、自动的封包识别是对日益增长的恶意软件数据库进行攻击的必要步骤。本文提出了一种p谱诱导线性支持向量机来实现具有良好精度和可扩展性的自动封隔器识别。该方法的有效性和效率在由25个封隔器创建的3228个打包文件组成的数据集上进行了评估,报告了近乎完美的识别结果。该方法有助于提高杀毒产品的扫描效率,方便高效的后端恶意软件研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信