Resolution width-size trade-offs for the Pigeon-Hole Principle

Stefan S. Dantchev
{"title":"Resolution width-size trade-offs for the Pigeon-Hole Principle","authors":"Stefan S. Dantchev","doi":"10.1109/CCC.2002.1004337","DOIUrl":null,"url":null,"abstract":"We prove the following two results: (1) There is a resolution proof of the Weak Pigeon-Hole Principle, WPHP/sub n//sup m/of size 2/sup O([n log n/log m]+log m)/ for any number of pigeons m and any number of holes n. (2) Any resolution proof of WPHP/sub n//sup m/ of width (1/16 - /spl epsi/) n/sup 2/ has to be of size 2/sup /spl Omega/(n)/, independently from m.. These results give not only a resolution size-width tradeoff for the Weak Pigeon-Hole Principle, but also almost optimal such trade-off for resolution in general. The upper bound (1) may be of independent interest, as it has been known for the two extreme values of m, m = n + 1 and in = 2/sup /spl radic/(n log n)/, only.","PeriodicalId":193513,"journal":{"name":"Proceedings 17th IEEE Annual Conference on Computational Complexity","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 17th IEEE Annual Conference on Computational Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCC.2002.1004337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We prove the following two results: (1) There is a resolution proof of the Weak Pigeon-Hole Principle, WPHP/sub n//sup m/of size 2/sup O([n log n/log m]+log m)/ for any number of pigeons m and any number of holes n. (2) Any resolution proof of WPHP/sub n//sup m/ of width (1/16 - /spl epsi/) n/sup 2/ has to be of size 2/sup /spl Omega/(n)/, independently from m.. These results give not only a resolution size-width tradeoff for the Weak Pigeon-Hole Principle, but also almost optimal such trade-off for resolution in general. The upper bound (1) may be of independent interest, as it has been known for the two extreme values of m, m = n + 1 and in = 2/sup /spl radic/(n log n)/, only.
鸽洞原理的分辨率宽度大小权衡
我们证明了以下两个结果:(1)对于任意数目的鸽子m和任意数目的洞n,存在大小为2/sup O([n log n/log m]+log m)/的弱鸽子洞原理的分辨率证明。(2)宽度为(1/16 - /spl epsi/) n/sup 2/的WPHP/sub n//sup m/的分辨率证明必须是大小为2/sup /spl Omega/(n)/,独立于m。这些结果不仅给出了弱鸽洞原理的分辨率尺寸-宽度折衷,而且也给出了一般分辨率的几乎最佳折衷。上界(1)可能是独立的兴趣,因为它已经知道m的两个极值,m = n + 1和in = 2/sup /spl径向/(n log n)/,只有。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信