Analysis of polycystic kidney disease in medical ultrasound images

Prema T. Akkasaligar, Sunanda Biradar
{"title":"Analysis of polycystic kidney disease in medical ultrasound images","authors":"Prema T. Akkasaligar, Sunanda Biradar","doi":"10.1504/IJMEI.2018.10010922","DOIUrl":null,"url":null,"abstract":"The growth of kidney diseases has gradually increased in recent years. Ultrasound imaging provides the internal structure of the body to detect eventually diseases or abnormal tissues non-invasively. Segmentation of required region in ultrasound images is one of the challenging tasks. The proposed method focuses on classification of medical ultrasound images of kidney as cystic and polycystic types. Segmentation is performed using gradient vector force (GVF) snakes. Before segmentation, speckle noise is removed using Gaussian filter and contrast is enhanced. We have segmented normal, cystic and polycystic kidney ultrasound images effectively using GVF snakes. We have also carried out segmentation using morphological operations which requires a user intervention during the process of segmentation. Geometrical features are used with k-NN for classifying medical US images of kidney as normal, single cystic and polycystic types for segmented regions .The proposed method has applications in analysis of organ morphology and realising quantitative measurements.","PeriodicalId":193362,"journal":{"name":"Int. J. Medical Eng. Informatics","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Medical Eng. Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJMEI.2018.10010922","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The growth of kidney diseases has gradually increased in recent years. Ultrasound imaging provides the internal structure of the body to detect eventually diseases or abnormal tissues non-invasively. Segmentation of required region in ultrasound images is one of the challenging tasks. The proposed method focuses on classification of medical ultrasound images of kidney as cystic and polycystic types. Segmentation is performed using gradient vector force (GVF) snakes. Before segmentation, speckle noise is removed using Gaussian filter and contrast is enhanced. We have segmented normal, cystic and polycystic kidney ultrasound images effectively using GVF snakes. We have also carried out segmentation using morphological operations which requires a user intervention during the process of segmentation. Geometrical features are used with k-NN for classifying medical US images of kidney as normal, single cystic and polycystic types for segmented regions .The proposed method has applications in analysis of organ morphology and realising quantitative measurements.
多囊肾病的医学超声图像分析
近年来,肾脏疾病的增长逐渐增加。超声成像提供了身体的内部结构,最终无创地检测疾病或异常组织。超声图像中所需区域的分割是具有挑战性的任务之一。提出的方法侧重于将肾脏的医学超声图像分为囊型和多囊型。使用梯度矢量力(GVF)蛇形进行分割。在分割前,采用高斯滤波去除散斑噪声,增强对比度。我们使用GVF蛇有效地分割了正常、囊性和多囊性肾超声图像。我们还使用形态学操作进行了分割,这需要用户在分割过程中进行干预。将几何特征与k-NN相结合,对医学超声图像进行正常、单囊和多囊三种类型的分割,并应用于器官形态分析和定量测量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信