Temperature, Pressure, Chemical Potential, and All That

R. Swendsen
{"title":"Temperature, Pressure, Chemical Potential, and All That","authors":"R. Swendsen","doi":"10.1093/acprof:oso/9780199646944.003.0008","DOIUrl":null,"url":null,"abstract":"The Maxwell–Boltzmann distribution of momentum is obtained from statistical mechanics. Expressions for the temperature, pressure, and chemical potential are formulated as partial derivatives of the entropy with respect to energy, volume, and particle-number. The temperature scale is derived from comparison with the ideal gas law. The concept of the fundamental relation is defined as an expression that contains all thermodynamic information about the system of interest. Its differential form is introduced. Equations of state contain partial information about the thermal properties of a system and can be expressed as partial derivatives of the fundamental relation. The function of thermometers, pressure gauges, and thermal reservoirs are derived from these principles.","PeriodicalId":102491,"journal":{"name":"An Introduction to Statistical Mechanics and Thermodynamics","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"An Introduction to Statistical Mechanics and Thermodynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/acprof:oso/9780199646944.003.0008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Maxwell–Boltzmann distribution of momentum is obtained from statistical mechanics. Expressions for the temperature, pressure, and chemical potential are formulated as partial derivatives of the entropy with respect to energy, volume, and particle-number. The temperature scale is derived from comparison with the ideal gas law. The concept of the fundamental relation is defined as an expression that contains all thermodynamic information about the system of interest. Its differential form is introduced. Equations of state contain partial information about the thermal properties of a system and can be expressed as partial derivatives of the fundamental relation. The function of thermometers, pressure gauges, and thermal reservoirs are derived from these principles.
温度,压强,化学势等等
动量的麦克斯韦-玻尔兹曼分布是从统计力学中得到的。温度、压力和化学势的表达式可以表示为熵对能量、体积和粒子数的偏导数。温标是通过与理想气体定律的比较得出的。基本关系的概念被定义为包含有关感兴趣的系统的所有热力学信息的表达式。介绍了它的微分形式。状态方程包含系统热性质的部分信息,可以表示为基本关系的偏导数。温度计、压力表和储热器的功能都是从这些原理推导出来的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信