Saliency moments for image categorization

Miriam Redi, B. Mérialdo
{"title":"Saliency moments for image categorization","authors":"Miriam Redi, B. Mérialdo","doi":"10.1145/1991996.1992035","DOIUrl":null,"url":null,"abstract":"In this paper we present Saliency Moments, a new, holistic descriptor for image recognition inspired by two biological vision principles: the gist perception and the selective visual attention. While traditional image features extract either local or global discriminative properties from the visual content, we use a hybrid approach that exploits some coarsely localized information, i.e. the salient regions shape and contours, to build a global, low-dimensional image signature. Results show that this new type of image description outperforms the traditional global features on scene and object categorization, for a variety of challenging datasets. Moreover, we show that, when combined with other existing descriptors (SIFT, Color Moments, Wavelet Feature and Edge Histogram), the saliency-based features provide complementary information, improving the precision of a retrieval system we build for the TRECVID 2010.","PeriodicalId":390933,"journal":{"name":"Proceedings of the 1st ACM International Conference on Multimedia Retrieval","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1st ACM International Conference on Multimedia Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1991996.1992035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

Abstract

In this paper we present Saliency Moments, a new, holistic descriptor for image recognition inspired by two biological vision principles: the gist perception and the selective visual attention. While traditional image features extract either local or global discriminative properties from the visual content, we use a hybrid approach that exploits some coarsely localized information, i.e. the salient regions shape and contours, to build a global, low-dimensional image signature. Results show that this new type of image description outperforms the traditional global features on scene and object categorization, for a variety of challenging datasets. Moreover, we show that, when combined with other existing descriptors (SIFT, Color Moments, Wavelet Feature and Edge Histogram), the saliency-based features provide complementary information, improving the precision of a retrieval system we build for the TRECVID 2010.
图像分类的显著性矩
在本文中,我们提出了一种新的、整体的图像识别描述符,它的灵感来自于两个生物视觉原理:主旨感知和选择性视觉注意。传统的图像特征从视觉内容中提取局部或全局判别属性,而我们使用混合方法,利用一些粗糙的局部信息,即显著区域的形状和轮廓,来构建全局的低维图像签名。结果表明,对于各种具有挑战性的数据集,这种新型图像描述在场景和目标分类方面优于传统的全局特征。此外,我们表明,当与其他现有的描述符(SIFT、颜色矩、小波特征和边缘直方图)结合时,基于显著性的特征提供了互补的信息,提高了我们为TRECVID 2010构建的检索系统的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信