Source recovery for body sensor network

Benny P. L. Lo, F. Deligianni, Guang-Zhong Yang
{"title":"Source recovery for body sensor network","authors":"Benny P. L. Lo, F. Deligianni, Guang-Zhong Yang","doi":"10.1109/BSN.2006.51","DOIUrl":null,"url":null,"abstract":"To accurately capture clinically relevant episodes with body sensor networks (BSNs), multi-sensor fusion is essential for extracting intrinsic physiological and contextual information. Due to the heterogeneous nature of the sensors compounded by the mixture of signals across different sensor channels, this process can be practically difficult. The purpose of this paper is to describe the use of source separation for BSN based on independent component analysis (ICA). We demonstrate how this can be used in practical BSN experiments when the number of sensing channels is limited","PeriodicalId":246227,"journal":{"name":"International Workshop on Wearable and Implantable Body Sensor Networks (BSN'06)","volume":"2016 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Wearable and Implantable Body Sensor Networks (BSN'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BSN.2006.51","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

To accurately capture clinically relevant episodes with body sensor networks (BSNs), multi-sensor fusion is essential for extracting intrinsic physiological and contextual information. Due to the heterogeneous nature of the sensors compounded by the mixture of signals across different sensor channels, this process can be practically difficult. The purpose of this paper is to describe the use of source separation for BSN based on independent component analysis (ICA). We demonstrate how this can be used in practical BSN experiments when the number of sensing channels is limited
人体传感器网络的源恢复
为了用身体传感器网络(BSNs)准确捕捉临床相关的事件,多传感器融合对于提取内在的生理和上下文信息至关重要。由于传感器的异质性由不同传感器通道的信号混合而成,这一过程实际上是困难的。本文的目的是描述基于独立分量分析(ICA)的源分离在BSN中的应用。我们演示了如何在传感通道数量有限的情况下将其用于实际的BSN实验
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信