Effect of Electrode Configurations on the Performance of Electro-Hydrodynamic Micromixer

Hak-Sun Kim, Hyun-Oh Kim, Youn-J. Kim
{"title":"Effect of Electrode Configurations on the Performance of Electro-Hydrodynamic Micromixer","authors":"Hak-Sun Kim, Hyun-Oh Kim, Youn-J. Kim","doi":"10.1115/ICNMM2018-7654","DOIUrl":null,"url":null,"abstract":"Micromixers are widely used in chemical engineering and bioengineering industries. In this study, geometrical effects of electrodes were investigated to mix fine particles affected by external electric field. In order to improve the particle mixing performance of micromixer, the electroosmosis effect could be utilized with configuration of electrodes at the top and bottom of microchannel. Numerical analysis was performed to derive the pattern of electrodes with superior mixing efficiency by changing voltages and zeta potentials applied to the micromixer channel, by using COMSOL Multiphysics 5.2. The results of mixing performance were graphically depicted with various arrangements of electrode and flow conditions.","PeriodicalId":137208,"journal":{"name":"ASME 2018 16th International Conference on Nanochannels, Microchannels, and Minichannels","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME 2018 16th International Conference on Nanochannels, Microchannels, and Minichannels","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/ICNMM2018-7654","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Micromixers are widely used in chemical engineering and bioengineering industries. In this study, geometrical effects of electrodes were investigated to mix fine particles affected by external electric field. In order to improve the particle mixing performance of micromixer, the electroosmosis effect could be utilized with configuration of electrodes at the top and bottom of microchannel. Numerical analysis was performed to derive the pattern of electrodes with superior mixing efficiency by changing voltages and zeta potentials applied to the micromixer channel, by using COMSOL Multiphysics 5.2. The results of mixing performance were graphically depicted with various arrangements of electrode and flow conditions.
电极结构对电液混合器性能的影响
微混合器广泛应用于化学工程和生物工程行业。本文研究了外加电场作用下电极对细颗粒混合的几何效应。为了提高微混合器的颗粒混合性能,可以通过在微通道的顶部和底部配置电极来利用电渗透效应。利用COMSOL Multiphysics 5.2进行数值分析,通过改变施加在微混合器通道上的电压和zeta电位,得出具有优异混合效率的电极模式。用图形描述了不同电极布置和流动条件下混合性能的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信