Applications of Spectral Theory to Special Functions

E. Koelink
{"title":"Applications of Spectral Theory to Special Functions","authors":"E. Koelink","doi":"10.1017/9781108908993.004","DOIUrl":null,"url":null,"abstract":"Lecture notes for one of the courses at the OPSFA Summerschool 6, July 11-15, 2016. All the results in these notes have appeared in the literature. \nMany special functions are eigenfunctions to explicit operators, such as difference and differential operators, which is in particular true for the special functions occurring in the Askey-scheme, its $q$-analogue and extensions. The study of the spectral properties of such operators leads to explicit information for the corresponding special functions. We discuss several instances of this application, involving orthogonal polynomials and their matrix-valued analogues.","PeriodicalId":413584,"journal":{"name":"Lectures on Orthogonal Polynomials and Special Functions","volume":"41 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lectures on Orthogonal Polynomials and Special Functions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/9781108908993.004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Lecture notes for one of the courses at the OPSFA Summerschool 6, July 11-15, 2016. All the results in these notes have appeared in the literature. Many special functions are eigenfunctions to explicit operators, such as difference and differential operators, which is in particular true for the special functions occurring in the Askey-scheme, its $q$-analogue and extensions. The study of the spectral properties of such operators leads to explicit information for the corresponding special functions. We discuss several instances of this application, involving orthogonal polynomials and their matrix-valued analogues.
谱理论在特殊函数中的应用
2016年7月11日至15日,OPSFA暑期学校的课堂讲稿。这些笔记中的所有结果都在文献中出现过。许多特殊函数是显式运算符的特征函数,例如差分和微分运算符,对于Askey-scheme及其$q$-类比和扩展中出现的特殊函数尤其如此。研究这些算子的谱性质可以得到相应的特殊函数的显式信息。我们讨论了这个应用的几个实例,包括正交多项式和它们的矩阵值类似物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信