UNET MOBILENETV2: MEDICAL IMAGE SEGMENTATION USING DEEP NEURAL NETWORK (DNN)

B. C. Bag
{"title":"UNET MOBILENETV2: MEDICAL IMAGE SEGMENTATION USING DEEP NEURAL NETWORK (DNN)","authors":"B. C. Bag","doi":"10.26782/jmcms.2023.01.00002","DOIUrl":null,"url":null,"abstract":"In this paper, the framework of polyp image segmentation is developed using a Deep neural network (DNN). Here Unet Mobile NetV2 is considered to evaluate the performance of the image from the CVC-612 dataset for the segmentation method. The proposed model outperformed earlier results. To compare our results two parameters, normally Dice co-efficient and Intersection over Union (IoU) are considered. The proposed model may be used for accurate computer-aided polyp detection and segmentation during colonoscopy examinations to find out abnormal tissue and thereby decrease the chances of polyps growing into cancer. MobileNetV2 significantly outperforms U-Net and MobileNetV2, two key state-of-the-art deep learning architectures, by achieving high evaluation scores with a dice coefficient of 89.71%, and an IoU of 81.64%.","PeriodicalId":254600,"journal":{"name":"JOURNAL OF MECHANICS OF CONTINUA AND MATHEMATICAL SCIENCES","volume":"207 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF MECHANICS OF CONTINUA AND MATHEMATICAL SCIENCES","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26782/jmcms.2023.01.00002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, the framework of polyp image segmentation is developed using a Deep neural network (DNN). Here Unet Mobile NetV2 is considered to evaluate the performance of the image from the CVC-612 dataset for the segmentation method. The proposed model outperformed earlier results. To compare our results two parameters, normally Dice co-efficient and Intersection over Union (IoU) are considered. The proposed model may be used for accurate computer-aided polyp detection and segmentation during colonoscopy examinations to find out abnormal tissue and thereby decrease the chances of polyps growing into cancer. MobileNetV2 significantly outperforms U-Net and MobileNetV2, two key state-of-the-art deep learning architectures, by achieving high evaluation scores with a dice coefficient of 89.71%, and an IoU of 81.64%.
Unet mobilenetv2:基于深度神经网络的医学图像分割
本文提出了一种基于深度神经网络的息肉图像分割框架。这里考虑Unet Mobile NetV2来评估CVC-612数据集图像的分割方法的性能。所提出的模型优于先前的结果。为了比较我们的结果,考虑了两个参数,通常是骰子系数和交联(IoU)。该模型可用于结肠镜检查时计算机辅助息肉的准确检测和分割,以发现异常组织,从而减少息肉长成癌的机会。MobileNetV2通过获得89.71%的骰子系数和81.64%的IoU的高评估分数,显著优于U-Net和MobileNetV2这两个最先进的关键深度学习架构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信