A Fast and Effective Classification Method for Missing Data

Y. Liu, Chaoya Wang, Wenxin Sun
{"title":"A Fast and Effective Classification Method for Missing Data","authors":"Y. Liu, Chaoya Wang, Wenxin Sun","doi":"10.1109/ISAIEE57420.2022.00052","DOIUrl":null,"url":null,"abstract":"Missing data is common in life. The preprocessing of missing data is the premise of pattern classification. Therefore, it is necessary to use the existing reliable training data set to attribute missing data. These methods have a significant impact on dealing with ambiguity in data sets. Therefore, it is necessary and effective to use accurate data and estimation methods to imput missing data. This paper presents a fast and effective method for missing data classification. Specifically, we propose two strategies to estimate incomplete data, namely, nearest class-center imputation (NCCI) and weighted class-center imputation (WCCI). At the same time, in order to further eliminate the influence of noise in the training set, we also propose a method to optimize the training set. Finally, a conventional classifier is used to classify the estimated incomplete data. The effectiveness of the proposed method is verified by testing different datasets with related methods.","PeriodicalId":345703,"journal":{"name":"2022 International Symposium on Advances in Informatics, Electronics and Education (ISAIEE)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Symposium on Advances in Informatics, Electronics and Education (ISAIEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISAIEE57420.2022.00052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Missing data is common in life. The preprocessing of missing data is the premise of pattern classification. Therefore, it is necessary to use the existing reliable training data set to attribute missing data. These methods have a significant impact on dealing with ambiguity in data sets. Therefore, it is necessary and effective to use accurate data and estimation methods to imput missing data. This paper presents a fast and effective method for missing data classification. Specifically, we propose two strategies to estimate incomplete data, namely, nearest class-center imputation (NCCI) and weighted class-center imputation (WCCI). At the same time, in order to further eliminate the influence of noise in the training set, we also propose a method to optimize the training set. Finally, a conventional classifier is used to classify the estimated incomplete data. The effectiveness of the proposed method is verified by testing different datasets with related methods.
一种快速有效的缺失数据分类方法
数据丢失在生活中很常见。缺失数据的预处理是模式分类的前提。因此,有必要利用已有的可靠训练数据集对缺失数据进行属性处理。这些方法对处理数据集的模糊性有重要的影响。因此,使用准确的数据和估计方法来输入缺失数据是必要和有效的。提出了一种快速有效的缺失数据分类方法。具体来说,我们提出了两种估计不完全数据的策略,即最近类中心imputation (NCCI)和加权类中心imputation (WCCI)。同时,为了进一步消除训练集中噪声的影响,我们还提出了一种对训练集进行优化的方法。最后,使用常规分类器对估计的不完全数据进行分类。通过对不同数据集的测试,验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信