Image Segmentation in Real Aperture Low-THz Radar Images

L. Daniel, D. Phippen, E. Hoare, M. Cherniakov, M. Gashinova
{"title":"Image Segmentation in Real Aperture Low-THz Radar Images","authors":"L. Daniel, D. Phippen, E. Hoare, M. Cherniakov, M. Gashinova","doi":"10.23919/IRS.2019.8768106","DOIUrl":null,"url":null,"abstract":"This paper presents the proof of concept of a methodology for radar image segmentation in real aperture low-THz high resolution radar imagery, ultimately as a method to identify traversable free space for path planning for autonomous vehicles. The segmentation method, based on histogram thresholding of super-pixel statistical means is described and then applied to candidate high resolution radar images to show the potential for region finding. The subsequently segmented images are then qualitatively analysed, relevant features such as shadow and anomalous statistical regions are discussed related to identification of hazard areas for path planning.","PeriodicalId":155427,"journal":{"name":"2019 20th International Radar Symposium (IRS)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 20th International Radar Symposium (IRS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/IRS.2019.8768106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

This paper presents the proof of concept of a methodology for radar image segmentation in real aperture low-THz high resolution radar imagery, ultimately as a method to identify traversable free space for path planning for autonomous vehicles. The segmentation method, based on histogram thresholding of super-pixel statistical means is described and then applied to candidate high resolution radar images to show the potential for region finding. The subsequently segmented images are then qualitatively analysed, relevant features such as shadow and anomalous statistical regions are discussed related to identification of hazard areas for path planning.
真实孔径低太赫兹雷达图像分割
本文提出了一种在真实孔径低太赫兹高分辨率雷达图像中进行雷达图像分割的方法的概念证明,最终作为一种识别可穿越自由空间的方法,用于自动驾驶汽车的路径规划。描述了基于超像素统计均值直方图阈值分割的分割方法,并将其应用于候选高分辨率雷达图像,以显示区域查找的潜力。然后对随后分割的图像进行定性分析,讨论与路径规划识别危险区域相关的相关特征,如阴影和异常统计区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信