Log-Modulated Rough Stochastic Volatility Models

Christian Bayer, Fabian A. Harang, P. Pigato
{"title":"Log-Modulated Rough Stochastic Volatility Models","authors":"Christian Bayer, Fabian A. Harang, P. Pigato","doi":"10.2139/ssrn.3668973","DOIUrl":null,"url":null,"abstract":"We propose a new class of rough stochastic volatility models obtained by modulating the power-law kernel defining the fractional Brownian motion (fBm) by a logarithmic term, such that the kernel retains square integrability even in the limit case of vanishing Hurst index $H$. The so-obtained log-modulated fractional Brownian motion (log-fBm) is a continuous Gaussian process even for $H = 0$. As a consequence, the resulting super-rough stochastic volatility models can be analysed over the whole range $0 \\le H","PeriodicalId":306152,"journal":{"name":"Risk Management eJournal","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Risk Management eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3668973","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

We propose a new class of rough stochastic volatility models obtained by modulating the power-law kernel defining the fractional Brownian motion (fBm) by a logarithmic term, such that the kernel retains square integrability even in the limit case of vanishing Hurst index $H$. The so-obtained log-modulated fractional Brownian motion (log-fBm) is a continuous Gaussian process even for $H = 0$. As a consequence, the resulting super-rough stochastic volatility models can be analysed over the whole range $0 \le H
对数调制粗糙随机波动模型
本文提出了一类新的粗糙随机波动模型,该模型通过对数项调制幂律核来定义分数阶布朗运动(fBm),使得核在Hurst指数$H$消失的极限情况下仍保持平方可积性。由此得到的对数调制分数布朗运动(log-fBm)即使在H = 0时也是一个连续的高斯过程。因此,所得到的超粗糙随机波动模型可以在整个范围内进行分析
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信