Short Boolean Formulas as Explanations in Practice

Reijo Jaakkola, T. Janhunen, Antti Kuusisto, Masood Feyzbakhsh Rankooh, Miikka Vilander
{"title":"Short Boolean Formulas as Explanations in Practice","authors":"Reijo Jaakkola, T. Janhunen, Antti Kuusisto, Masood Feyzbakhsh Rankooh, Miikka Vilander","doi":"10.48550/arXiv.2307.06971","DOIUrl":null,"url":null,"abstract":"We investigate explainability via short Boolean formulas in the data model based on unary relations. As an explanation of length k, we take a Boolean formula of length k that minimizes the error with respect to the target attribute to be explained. We first provide novel quantitative bounds for the expected error in this scenario. We then also demonstrate how the setting works in practice by studying three concrete data sets. In each case, we calculate explanation formulas of different lengths using an encoding in Answer Set Programming. The most accurate formulas we obtain achieve errors similar to other methods on the same data sets. However, due to overfitting, these formulas are not necessarily ideal explanations, so we use cross validation to identify a suitable length for explanations. By limiting to shorter formulas, we obtain explanations that avoid overfitting but are still reasonably accurate and also, importantly, human interpretable.","PeriodicalId":225087,"journal":{"name":"European Conference on Logics in Artificial Intelligence","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Conference on Logics in Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2307.06971","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate explainability via short Boolean formulas in the data model based on unary relations. As an explanation of length k, we take a Boolean formula of length k that minimizes the error with respect to the target attribute to be explained. We first provide novel quantitative bounds for the expected error in this scenario. We then also demonstrate how the setting works in practice by studying three concrete data sets. In each case, we calculate explanation formulas of different lengths using an encoding in Answer Set Programming. The most accurate formulas we obtain achieve errors similar to other methods on the same data sets. However, due to overfitting, these formulas are not necessarily ideal explanations, so we use cross validation to identify a suitable length for explanations. By limiting to shorter formulas, we obtain explanations that avoid overfitting but are still reasonably accurate and also, importantly, human interpretable.
短布尔公式在实践中的解释
我们通过基于一元关系的数据模型中的短布尔公式来研究可解释性。作为对长度k的解释,我们取一个长度为k的布尔公式,该公式使相对于要解释的目标属性的误差最小化。我们首先为这种情况下的预期误差提供了新的定量界限。然后,我们还通过研究三个具体的数据集来演示设置在实践中是如何工作的。在每种情况下,我们使用答案集编程中的编码计算不同长度的解释公式。我们得到的最精确的公式在相同数据集上的误差与其他方法相似。然而,由于过度拟合,这些公式不一定是理想的解释,因此我们使用交叉验证来确定合适的解释长度。通过限制使用较短的公式,我们获得的解释避免了过度拟合,但仍然相当准确,而且重要的是,人类可以解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信