Convexidade em Grafo Linha de Bipartido

V. Ponciano, R. S. Oliveira
{"title":"Convexidade em Grafo Linha de Bipartido","authors":"V. Ponciano, R. S. Oliveira","doi":"10.5753/etc.2019.6403","DOIUrl":null,"url":null,"abstract":"For a nontrivial connected and simple graphs G= (V(G), E(G)), a set S E(G) is called edge geodetic set of G if every edge of G it’s in S or is contained in a geodesic joining some pair of edges in S. The edge geodetic number eds(G) of G is the minimum order of its edge geodetic sets. We prove that it is NP-complete to decide for a given bipartiti graphs G and a given integer k whether G has a edge geodetic set of cardinality at most k. A set M V(G) is called P3 set of G if all vertices of G have two neighbors in M. The P3 number of G is the minimum order of its P3 sets. We prove that it is NP-complete to decide for a given graphs G(diamond,odd-hole) free and a given integer k whether G has a P3 set of cardinality at most k.","PeriodicalId":315906,"journal":{"name":"Anais do Encontro de Teoria da Computação (ETC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do Encontro de Teoria da Computação (ETC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/etc.2019.6403","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For a nontrivial connected and simple graphs G= (V(G), E(G)), a set S E(G) is called edge geodetic set of G if every edge of G it’s in S or is contained in a geodesic joining some pair of edges in S. The edge geodetic number eds(G) of G is the minimum order of its edge geodetic sets. We prove that it is NP-complete to decide for a given bipartiti graphs G and a given integer k whether G has a edge geodetic set of cardinality at most k. A set M V(G) is called P3 set of G if all vertices of G have two neighbors in M. The P3 number of G is the minimum order of its P3 sets. We prove that it is NP-complete to decide for a given graphs G(diamond,odd-hole) free and a given integer k whether G has a P3 set of cardinality at most k.
图的凸性二部线
对于非平凡连通简单图G= (V(G), E(G)),如果G的每条边都在S中或包含在连接S中某对边的测地线中,则集合S E(G)称为G的边测地线集。G的边测地线数eds(G)是其边测地线集的最小阶数。证明了对于给定的二分图G和给定的整数k,判定G是否有一个基数最多为k的边测地集是np完全的。如果G的所有顶点在M中有两个邻居,则集合M V(G)称为G的P3集,G的P3数是其P3集的最小阶数。证明了对于给定的无图G(菱形,奇洞)和给定的整数k,判定G是否有一个不超过k的P3基数集是np完全的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信