Flexible, ultra-low power sensor nodes through configurable finite state machines

J. P. Ramos, M. Verhelst
{"title":"Flexible, ultra-low power sensor nodes through configurable finite state machines","authors":"J. P. Ramos, M. Verhelst","doi":"10.1109/ReCoSoC.2013.6581533","DOIUrl":null,"url":null,"abstract":"Due to the recent popularity of context-sensitive applications, there is a growing need for reliable, long-lifetime ubiquitous sensor nodes. The severe energy-efficiency requirements of these energy-scarce devices require complementing traditional circuit-level energy saving techniques, with architecture-level methods. Traditional approaches such as exploiting parallelism have however limited impact in sensor node processors, due to their control-dominated and event-based, irregular data processing workload patterns. Executing event-based tasks in specialized finite state machines relieves the on-board microcontroller, however, at the penalty of reduced post-manufacturing configurability. An architecture proposal for configurable finite state machines assisting sensor node processors is presented, which allows saving energy through task off-load while maintaining system flexibility. Simulations demonstrate 46% energy savings when compared to a sensor node that executes tasks in a microcontroller. This gain comes at relatively minor area overhead.","PeriodicalId":354964,"journal":{"name":"2013 8th International Workshop on Reconfigurable and Communication-Centric Systems-on-Chip (ReCoSoC)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 8th International Workshop on Reconfigurable and Communication-Centric Systems-on-Chip (ReCoSoC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ReCoSoC.2013.6581533","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Due to the recent popularity of context-sensitive applications, there is a growing need for reliable, long-lifetime ubiquitous sensor nodes. The severe energy-efficiency requirements of these energy-scarce devices require complementing traditional circuit-level energy saving techniques, with architecture-level methods. Traditional approaches such as exploiting parallelism have however limited impact in sensor node processors, due to their control-dominated and event-based, irregular data processing workload patterns. Executing event-based tasks in specialized finite state machines relieves the on-board microcontroller, however, at the penalty of reduced post-manufacturing configurability. An architecture proposal for configurable finite state machines assisting sensor node processors is presented, which allows saving energy through task off-load while maintaining system flexibility. Simulations demonstrate 46% energy savings when compared to a sensor node that executes tasks in a microcontroller. This gain comes at relatively minor area overhead.
灵活,超低功耗传感器节点通过可配置的有限状态机
由于最近上下文敏感应用的流行,对可靠的、长寿命的无处不在的传感器节点的需求日益增长。这些能源稀缺设备对能源效率的严格要求,需要用架构级的方法补充传统的电路级节能技术。然而,利用并行性等传统方法对传感器节点处理器的影响有限,这是由于它们的控制主导和基于事件的不规则数据处理工作负载模式。然而,在专门的有限状态机中执行基于事件的任务减轻了板载微控制器的负担,代价是降低了制造后的可配置性。提出了一种辅助传感器节点处理器的可配置有限状态机架构方案,在保证系统灵活性的同时,通过任务卸载实现节能。仿真表明,与在微控制器中执行任务的传感器节点相比,可以节省46%的能源。这种增益来自相对较小的面积开销。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信