The Restricted Variational Bayes Approximation in Bayesian Filtering

V. Šmídl, A. Quinn
{"title":"The Restricted Variational Bayes Approximation in Bayesian Filtering","authors":"V. Šmídl, A. Quinn","doi":"10.1109/NSSPW.2006.4378860","DOIUrl":null,"url":null,"abstract":"The Variational Bayes (VB) approach is used as a one-step approximation for Bayesian filtering. It requires the availability of moments of the free-form distributional optimizers. The latter may have intractable functional forms. In this contribution, we replace these by appropriate fixed-form distributions yielding the required moments. We address two scenarios of this Restricted VB (RVB) approximation. For the first scenario, an application in identification of HMMs is given. Close relationship of the second scenario to Rao-Blackwellized particle filtering is discussed and their performance is illustrated on a simple non-linear model.","PeriodicalId":388611,"journal":{"name":"2006 IEEE Nonlinear Statistical Signal Processing Workshop","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Nonlinear Statistical Signal Processing Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NSSPW.2006.4378860","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

The Variational Bayes (VB) approach is used as a one-step approximation for Bayesian filtering. It requires the availability of moments of the free-form distributional optimizers. The latter may have intractable functional forms. In this contribution, we replace these by appropriate fixed-form distributions yielding the required moments. We address two scenarios of this Restricted VB (RVB) approximation. For the first scenario, an application in identification of HMMs is given. Close relationship of the second scenario to Rao-Blackwellized particle filtering is discussed and their performance is illustrated on a simple non-linear model.
贝叶斯滤波中的受限变分贝叶斯逼近
变分贝叶斯(VB)方法被用作贝叶斯滤波的一步逼近。它需要自由形式分布优化器的矩的可用性。后者可能具有难以处理的功能形式。在本文中,我们用产生所需矩的适当的固定形式分布代替这些分布。我们讨论了这种受限VB (RVB)近似的两种情况。对于第一种情况,给出了在hmm识别中的应用。讨论了第二种情况与rao - blackwell化粒子滤波的密切关系,并用一个简单的非线性模型说明了它们的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信