A bottom-up algorithm for solving ♯2SAT

Guillermo De Ita, J. R. Marcial-Romero, J. A. H. Servín
{"title":"A bottom-up algorithm for solving ♯2SAT","authors":"Guillermo De Ita, J. R. Marcial-Romero, J. A. H. Servín","doi":"10.1093/jigpal/jzaa009","DOIUrl":null,"url":null,"abstract":"\n Counting models for a two conjunctive formula (2-CF) $F$, a problem known as $\\sharp $2Sat, is a classic $\\sharp $P complete problem. Given a 2-CF $F$ as input, its constraint graph $G$ is built. If $G$ is acyclic, then $\\sharp $2Sat($F$) can be computed efficiently. In this paper, we address the case when $G$ has cycles.\n When $G$ is cyclic, we propose a decomposition on the constraint graph $G$ that allows the computation of $\\sharp $2Sat($F$) in incremental way. Let $T$ be a cactus graph of $G$ containing a maximal number of independent cycles, and let $\\overline{T}=(E(G)-E(T))$ be a subset of frond edges from $G$. The clauses in $\\overline{T}$ are ordered in connected components $\\{K_1, \\ldots , K_r\\}$. Each $(G \\cup K_i), i=1,\\ldots ,r$ is a knot (a set of intersected cycles) of the graph.\n The arrangement of the clauses of $\\overline{T}$ allows the decomposition of $G$ in knots and provides a way of computing $\\sharp $2Sat(F) in an incremental way. Our procedure has a bottom-up orientation for the computation of $\\sharp $2Sat($F$). It begins with $F_0 = T$. In each iteration of the procedure, a new clause $C_i \\in \\overline{T}$ is considered in order to form $F_i = (F_{i-1} \\wedge C_i)$ and then to compute $\\sharp $2Sat$(F_i)$ based on the computation of $\\sharp $2Sat$(F_{i-1})$.","PeriodicalId":304915,"journal":{"name":"Log. J. IGPL","volume":"92 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Log. J. IGPL","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jigpal/jzaa009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Counting models for a two conjunctive formula (2-CF) $F$, a problem known as $\sharp $2Sat, is a classic $\sharp $P complete problem. Given a 2-CF $F$ as input, its constraint graph $G$ is built. If $G$ is acyclic, then $\sharp $2Sat($F$) can be computed efficiently. In this paper, we address the case when $G$ has cycles. When $G$ is cyclic, we propose a decomposition on the constraint graph $G$ that allows the computation of $\sharp $2Sat($F$) in incremental way. Let $T$ be a cactus graph of $G$ containing a maximal number of independent cycles, and let $\overline{T}=(E(G)-E(T))$ be a subset of frond edges from $G$. The clauses in $\overline{T}$ are ordered in connected components $\{K_1, \ldots , K_r\}$. Each $(G \cup K_i), i=1,\ldots ,r$ is a knot (a set of intersected cycles) of the graph. The arrangement of the clauses of $\overline{T}$ allows the decomposition of $G$ in knots and provides a way of computing $\sharp $2Sat(F) in an incremental way. Our procedure has a bottom-up orientation for the computation of $\sharp $2Sat($F$). It begins with $F_0 = T$. In each iteration of the procedure, a new clause $C_i \in \overline{T}$ is considered in order to form $F_i = (F_{i-1} \wedge C_i)$ and then to compute $\sharp $2Sat$(F_i)$ based on the computation of $\sharp $2Sat$(F_{i-1})$.
求解# 2SAT的自底向上算法
两个合式(2-CF) $F$的计数模型,一个被称为$\sharp $ 2Sat的问题,是一个经典的$\sharp $ P完全问题。给定一个2-CF $F$作为输入,构建其约束图$G$。如果$G$是无环的,则$\sharp $ 2Sat($F$)可以有效地计算。在本文中,我们讨论$G$有循环的情况。当$G$是循环时,我们提出了对约束图$G$的分解,允许以增量方式计算$\sharp $ 2Sat($F$)。设$T$为含有最大独立环数的$G$的仙人掌图,设$\overline{T}=(E(G)-E(T))$为$G$的前缘子集。$\overline{T}$中的子句在连接的组件$\{K_1, \ldots , K_r\}$中排序。每个$(G \cup K_i), i=1,\ldots ,r$是图形的一个结(一组相交的循环)。$\overline{T}$子句的排列允许将$G$分解为节,并提供了一种以增量方式计算$\sharp $ 2Sat(F)的方法。我们的程序具有自下而上的方向,用于计算$\sharp $ 2Sat($F$)。它以$F_0 = T$开头。在过程的每次迭代中,考虑一个新的子句$C_i \in \overline{T}$,以形成$F_i = (F_{i-1} \wedge C_i)$,然后根据$\sharp $ 2Sat $(F_{i-1})$的计算计算$\sharp $ 2Sat $(F_i)$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信