Photonic Band Gaps

T. Shepherd
{"title":"Photonic Band Gaps","authors":"T. Shepherd","doi":"10.1109/CLEOE.1998.718884","DOIUrl":null,"url":null,"abstract":"Photonic band gaps are ranges of frequency within which electromagnetic propagation is completely forbidden. They are present in certain materials which possess a periodicity of permittivity at the wavelength scale. Materials with these extreme properties are not known to occur naturally, and. at the optical wavelength scale, require fabrication methods at the current limits of technological feasibility. Such a photonic crystal provides a lossless barrier to propagation, and can suppress the emission of a photon by a decaying atom if the frequency of the emitted photon lies within the gap. A preferred propagation route, or mode, can be specified by designed defects within the photonic crystal; thus it is expected that I photonic crystals can provide a means whereby spontaneous emission is controlled in active media, and that all the spontaneously emitted light enters a single mode, resulting in an ideal zero-threshold laser. More generally, the photonic density of states is altered in these materials, and spontaneous emission can be enhanced or suppressed, as required. Other applications include novel all-angle reflectors, narrow-band filters, resonators, waveguides, and delay lines. When the fabrication problems for optical photonic crystals have been conquered, wavelength-scale periodic media will form an essential functions in a large range of optoelectronic systems.","PeriodicalId":404067,"journal":{"name":"CLEO/Europe Conference on Lasers and Electro-Optics","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CLEO/Europe Conference on Lasers and Electro-Optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLEOE.1998.718884","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

Abstract

Photonic band gaps are ranges of frequency within which electromagnetic propagation is completely forbidden. They are present in certain materials which possess a periodicity of permittivity at the wavelength scale. Materials with these extreme properties are not known to occur naturally, and. at the optical wavelength scale, require fabrication methods at the current limits of technological feasibility. Such a photonic crystal provides a lossless barrier to propagation, and can suppress the emission of a photon by a decaying atom if the frequency of the emitted photon lies within the gap. A preferred propagation route, or mode, can be specified by designed defects within the photonic crystal; thus it is expected that I photonic crystals can provide a means whereby spontaneous emission is controlled in active media, and that all the spontaneously emitted light enters a single mode, resulting in an ideal zero-threshold laser. More generally, the photonic density of states is altered in these materials, and spontaneous emission can be enhanced or suppressed, as required. Other applications include novel all-angle reflectors, narrow-band filters, resonators, waveguides, and delay lines. When the fabrication problems for optical photonic crystals have been conquered, wavelength-scale periodic media will form an essential functions in a large range of optoelectronic systems.
光子带隙
光子带隙是完全禁止电磁传播的频率范围。它们存在于某些在波长尺度上具有周期性介电常数的材料中。具有这些极端性质的材料在自然界中是不存在的。在光学波长尺度上,要求制造方法达到目前技术可行性的极限。这样的光子晶体提供了一个无损的传播屏障,并且如果发射光子的频率在间隙内,可以抑制衰变原子的光子发射。首选的传播路径或模式可以通过设计光子晶体中的缺陷来指定;因此,我们期望光子晶体能够提供一种在有源介质中控制自发发射的手段,并且所有自发发射的光都进入单模,从而产生理想的零阈值激光器。更一般地说,在这些材料中状态的光子密度被改变,自发发射可以根据需要被增强或抑制。其他应用包括新型全角反射器、窄带滤波器、谐振器、波导和延迟线。当光学光子晶体的制备问题得到解决后,波长尺度周期介质将在大范围的光电系统中发挥重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信