Discovering Anomalies and Root Causes in Applications via Relevant Fields Analysis

Yuchen Zhao, Arjun Iyer, Ariel Smoliar
{"title":"Discovering Anomalies and Root Causes in Applications via Relevant Fields Analysis","authors":"Yuchen Zhao, Arjun Iyer, Ariel Smoliar","doi":"10.1109/ICDMW.2015.68","DOIUrl":null,"url":null,"abstract":"In this paper, we present a powerful end-to-end data mining system that collects application related data and provides insightful relevant fields analysis in addition to search and filtering. We present details on field extraction, indexing, relevant field processing and dynamic baseline derivation. We also propose to demonstrate the effectiveness of various scoring algorithms. Two real-world use cases show relevant fields analysis is effective to detect application anomalies and discover root causes of application incidents.","PeriodicalId":192888,"journal":{"name":"2015 IEEE International Conference on Data Mining Workshop (ICDMW)","volume":"18 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Data Mining Workshop (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2015.68","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we present a powerful end-to-end data mining system that collects application related data and provides insightful relevant fields analysis in addition to search and filtering. We present details on field extraction, indexing, relevant field processing and dynamic baseline derivation. We also propose to demonstrate the effectiveness of various scoring algorithms. Two real-world use cases show relevant fields analysis is effective to detect application anomalies and discover root causes of application incidents.
通过相关领域分析发现应用中的异常和根本原因
在本文中,我们提出了一个强大的端到端数据挖掘系统,除了搜索和过滤之外,还可以收集与应用程序相关的数据,并提供深刻的相关领域分析。详细介绍了字段提取、索引、相关字段处理和动态基线推导。我们还建议演示各种评分算法的有效性。两个真实的用例表明,相关领域分析对于检测应用程序异常和发现应用程序事件的根本原因是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信