Unsupervised Learning of Image Transformations

R. Memisevic, Geoffrey E. Hinton
{"title":"Unsupervised Learning of Image Transformations","authors":"R. Memisevic, Geoffrey E. Hinton","doi":"10.1109/CVPR.2007.383036","DOIUrl":null,"url":null,"abstract":"We describe a probabilistic model for learning rich, distributed representations of image transformations. The basic model is defined as a gated conditional random field that is trained to predict transformations of its inputs using a factorial set of latent variables. Inference in the model consists in extracting the transformation, given a pair of images, and can be performed exactly and efficiently. We show that, when trained on natural videos, the model develops domain specific motion features, in the form of fields of locally transformed edge filters. When trained on affine, or more general, transformations of still images, the model develops codes for these transformations, and can subsequently perform recognition tasks that are invariant under these transformations. It can also fantasize new transformations on previously unseen images. We describe several variations of the basic model and provide experimental results that demonstrate its applicability to a variety of tasks.","PeriodicalId":351008,"journal":{"name":"2007 IEEE Conference on Computer Vision and Pattern Recognition","volume":"48 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"217","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2007.383036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 217

Abstract

We describe a probabilistic model for learning rich, distributed representations of image transformations. The basic model is defined as a gated conditional random field that is trained to predict transformations of its inputs using a factorial set of latent variables. Inference in the model consists in extracting the transformation, given a pair of images, and can be performed exactly and efficiently. We show that, when trained on natural videos, the model develops domain specific motion features, in the form of fields of locally transformed edge filters. When trained on affine, or more general, transformations of still images, the model develops codes for these transformations, and can subsequently perform recognition tasks that are invariant under these transformations. It can also fantasize new transformations on previously unseen images. We describe several variations of the basic model and provide experimental results that demonstrate its applicability to a variety of tasks.
图像变换的无监督学习
我们描述了一个概率模型,用于学习图像变换的丰富、分布式表示。基本模型被定义为一个门控条件随机场,它被训练成使用一组潜在变量的阶乘来预测其输入的变换。模型中的推理是在给定一对图像的情况下提取变换,可以准确有效地进行推理。我们表明,当对自然视频进行训练时,该模型以局部变换的边缘滤波器的场的形式发展出特定领域的运动特征。当对静止图像的仿射或更一般的转换进行训练时,该模型为这些转换开发代码,并随后执行在这些转换下不变的识别任务。它还可以幻想对以前看不见的图像进行新的转换。我们描述了基本模型的几种变体,并提供了实验结果,证明了它对各种任务的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信