Beyond Worst-Case Analysis for Root Isolation Algorithms

A. Ergur, Josué Tonelli-Cueto, Elias P. Tsigaridas
{"title":"Beyond Worst-Case Analysis for Root Isolation Algorithms","authors":"A. Ergur, Josué Tonelli-Cueto, Elias P. Tsigaridas","doi":"10.1145/3476446.3535475","DOIUrl":null,"url":null,"abstract":"Isolating the real roots of univariate polynomials is a fundamental problem in symbolic computation and it is arguably one of the most important problems in computational mathematics. The problem has a long history decorated with numerous ingenious algorithms and furnishes an active area of research. However, the worst-case analysis of root-finding algorithms does not correlate with their practical performance. We develop a smoothed analysis framework for polynomials with integer coefficients to bridge the gap between the complexity estimates and the practical performance. In this setting, we derive that the expected bit complexity of Descartes solver to isolate the real roots of a polynomial, with coefficients uniformly distributed, is ÕB(d2 + dτ), where d is the degree of the polynomial and τ the bitsize of the coefficients.","PeriodicalId":130499,"journal":{"name":"Proceedings of the 2022 International Symposium on Symbolic and Algebraic Computation","volume":"113 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 International Symposium on Symbolic and Algebraic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3476446.3535475","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Isolating the real roots of univariate polynomials is a fundamental problem in symbolic computation and it is arguably one of the most important problems in computational mathematics. The problem has a long history decorated with numerous ingenious algorithms and furnishes an active area of research. However, the worst-case analysis of root-finding algorithms does not correlate with their practical performance. We develop a smoothed analysis framework for polynomials with integer coefficients to bridge the gap between the complexity estimates and the practical performance. In this setting, we derive that the expected bit complexity of Descartes solver to isolate the real roots of a polynomial, with coefficients uniformly distributed, is ÕB(d2 + dτ), where d is the degree of the polynomial and τ the bitsize of the coefficients.
根隔离算法的最坏情况分析
一元多项式的实根分离是符号计算中的一个基本问题,可以说是计算数学中最重要的问题之一。这个问题有着悠久的历史,有许多巧妙的算法,并提供了一个活跃的研究领域。然而,查找根算法的最坏情况分析与它们的实际性能并不相关。我们开发了一个整系数多项式的平滑分析框架,以弥合复杂性估计与实际性能之间的差距。在这种情况下,我们推导出分离系数均匀分布的多项式的实根的笛卡儿解算器的期望位复杂度为ÕB(d2 + dτ),其中d是多项式的阶数,τ是系数的位大小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信