Old Handwritten Music Symbol Recognition Using Directional Multi-Resolution Spatial Features

Savitri Apparao Nawade, M. Hangarge, C. Dhawale, M. Reaz, Rajmohan Pardeshi, N. Arsad
{"title":"Old Handwritten Music Symbol Recognition Using Directional Multi-Resolution Spatial Features","authors":"Savitri Apparao Nawade, M. Hangarge, C. Dhawale, M. Reaz, Rajmohan Pardeshi, N. Arsad","doi":"10.1109/ICSCEE.2018.8538370","DOIUrl":null,"url":null,"abstract":"Automatic recognition of musical symbols received huge attention in the last two decades. Most of the work is carried out for the recognition of printed symbols whereas little attention is given to handwritten symbols. In handwritten musical symbols, when we deal with historical and old handwritten musical symbols, the problem becomes more challenging. In this paper, we have dealt with recognition ofold handwritten musical symbols. In our method, we have used directional multi-resolution statistical descriptors by combining Radon Transform, Discrete Wavelet Transform, and Statistical Filters. Simple k-NN classifier is used with fivefold cross validation. We have achieved encouraging results on our dataset.","PeriodicalId":265737,"journal":{"name":"2018 International Conference on Smart Computing and Electronic Enterprise (ICSCEE)","volume":"168 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Smart Computing and Electronic Enterprise (ICSCEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSCEE.2018.8538370","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Automatic recognition of musical symbols received huge attention in the last two decades. Most of the work is carried out for the recognition of printed symbols whereas little attention is given to handwritten symbols. In handwritten musical symbols, when we deal with historical and old handwritten musical symbols, the problem becomes more challenging. In this paper, we have dealt with recognition ofold handwritten musical symbols. In our method, we have used directional multi-resolution statistical descriptors by combining Radon Transform, Discrete Wavelet Transform, and Statistical Filters. Simple k-NN classifier is used with fivefold cross validation. We have achieved encouraging results on our dataset.
利用定向多分辨率空间特征识别旧手写体音乐符号
在过去的二十年里,音乐符号的自动识别受到了极大的关注。大部分的工作是为了识别印刷符号而进行的,而很少关注手写符号。在手写音乐符号中,当我们处理历史和古老的手写音乐符号时,问题变得更具挑战性。本文研究了手写体音乐符号的识别问题。在我们的方法中,我们结合Radon变换、离散小波变换和统计滤波器,使用了定向多分辨率统计描述符。简单的k-NN分类器使用五重交叉验证。我们在数据集上取得了令人鼓舞的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信