High performance clustering for large data warehouses using peer-to-peer genetic algorithm

M.N. Shah, R. Mahmood
{"title":"High performance clustering for large data warehouses using peer-to-peer genetic algorithm","authors":"M.N. Shah, R. Mahmood","doi":"10.1109/INMIC.2003.1416762","DOIUrl":null,"url":null,"abstract":"High volumes of data pose a challenge to the scalability of data mining algorithms. Dividing this data into equal partitions and processing it in parallel naturally becomes a choice. Peer-to-peer computing exposes a bright source for exploiting parallelism and maintaining scale-up capability. We consider parallelism in genetic algorithms while computing the fitness of the population individuals (chromosomes). This strategy has an edge over its counterpart, that is, parallelism in genetic operators, because genetic operators tend to be computationally cheap. Simply speaking this scheme supports large data sets, that is. larger the data size, larger will be the degree of parallelism achieved.","PeriodicalId":253329,"journal":{"name":"7th International Multi Topic Conference, 2003. INMIC 2003.","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"7th International Multi Topic Conference, 2003. INMIC 2003.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INMIC.2003.1416762","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

High volumes of data pose a challenge to the scalability of data mining algorithms. Dividing this data into equal partitions and processing it in parallel naturally becomes a choice. Peer-to-peer computing exposes a bright source for exploiting parallelism and maintaining scale-up capability. We consider parallelism in genetic algorithms while computing the fitness of the population individuals (chromosomes). This strategy has an edge over its counterpart, that is, parallelism in genetic operators, because genetic operators tend to be computationally cheap. Simply speaking this scheme supports large data sets, that is. larger the data size, larger will be the degree of parallelism achieved.
使用点对点遗传算法的大型数据仓库的高性能聚类
海量数据对数据挖掘算法的可扩展性提出了挑战。将这些数据划分为相等的分区并并行处理自然成为一种选择。点对点计算为利用并行性和维护扩展能力提供了一个光明的来源。在计算种群个体(染色体)的适应度时,我们在遗传算法中考虑了并行性。这种策略比它的对应策略有优势,即遗传运算符的并行性,因为遗传运算符的计算成本往往很低。简单地说,该方案支持大型数据集,即。数据大小越大,实现的并行度就越大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信