Projective geometry and feedback stabilization

J. Bokor, Z. Szabó
{"title":"Projective geometry and feedback stabilization","authors":"J. Bokor, Z. Szabó","doi":"10.1109/INES.2017.8118537","DOIUrl":null,"url":null,"abstract":"The goal of this paper is to provide a geometric study of the well-posedness and stability concepts associated to the feedback control loops. The usefulness of Kleinian-view of geometry is emphasized and tools from matrix projective geometry are applied. It will be shown that Mobius transforms play a central role to arrive to the group structures that characterize the well posed and stable feedback connections of dynamic systems. The well-known Youla parametrization is obtained as a special case of this group of transforms.","PeriodicalId":344933,"journal":{"name":"2017 IEEE 21st International Conference on Intelligent Engineering Systems (INES)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 21st International Conference on Intelligent Engineering Systems (INES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INES.2017.8118537","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The goal of this paper is to provide a geometric study of the well-posedness and stability concepts associated to the feedback control loops. The usefulness of Kleinian-view of geometry is emphasized and tools from matrix projective geometry are applied. It will be shown that Mobius transforms play a central role to arrive to the group structures that characterize the well posed and stable feedback connections of dynamic systems. The well-known Youla parametrization is obtained as a special case of this group of transforms.
射影几何和反馈稳定
本文的目的是提供与反馈控制回路相关的适定性和稳定性概念的几何研究。强调了克莱因几何的有用性,并应用了矩阵射影几何的工具。本文将证明莫比乌斯变换在求解群结构中起着核心作用,而群结构表征了动态系统的良好定态和稳定的反馈连接。众所周知的优拉参数化是这组变换的一个特例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信