Self-learning fuzzy controller with neural plant estimator for snack food frying

Y. Choi, A. Dale Whittaker, D. C. Bullock
{"title":"Self-learning fuzzy controller with neural plant estimator for snack food frying","authors":"Y. Choi, A. Dale Whittaker, D. C. Bullock","doi":"10.1109/IFIS.1993.324223","DOIUrl":null,"url":null,"abstract":"Fuzzy logic-based control has emerged as a promising approach for complex and/or ill-defined process control. In this paper, a self-learning fuzzy controller with neural plant estimator is designed for the snack food frying control and the specific objectives are as follows: 1) to find the control variables affecting on product quality based on the statistical results of experimental data; 2) to employ the neural estimator for the prediction of real plant output related to time lag; 3) to construct the adaptive-network-based fuzzy inference system for the fuzzy inference rule extraction and the membership function tuning; and 4) to evaluate the designed controller performance by simulation.<<ETX>>","PeriodicalId":408138,"journal":{"name":"Third International Conference on Industrial Fuzzy Control and Intelligent Systems","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Third International Conference on Industrial Fuzzy Control and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IFIS.1993.324223","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Fuzzy logic-based control has emerged as a promising approach for complex and/or ill-defined process control. In this paper, a self-learning fuzzy controller with neural plant estimator is designed for the snack food frying control and the specific objectives are as follows: 1) to find the control variables affecting on product quality based on the statistical results of experimental data; 2) to employ the neural estimator for the prediction of real plant output related to time lag; 3) to construct the adaptive-network-based fuzzy inference system for the fuzzy inference rule extraction and the membership function tuning; and 4) to evaluate the designed controller performance by simulation.<>
带神经植物估计器的自学习模糊控制器用于休闲食品油炸
基于模糊逻辑的控制已成为复杂和/或定义不清的过程控制的一种有前途的方法。本文设计了一种带有神经植物估计器的自学习模糊控制器,用于休闲食品油炸控制,具体目标如下:1)根据实验数据的统计结果,找出影响产品质量的控制变量;2)利用神经估计器对与时滞相关的真实装置输出进行预测;3)构建基于自适应网络的模糊推理系统,进行模糊推理规则提取和隶属函数整定;4)通过仿真对所设计控制器的性能进行评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信