Generation of Maize (Zea mays) Doubled Haploids via Traditional Methods

Q1 Agricultural and Biological Sciences
Kimberly Vanous, Adam Vanous, Ursula K. Frei, Thomas Lübberstedt
{"title":"Generation of Maize (Zea mays) Doubled Haploids via Traditional Methods","authors":"Kimberly Vanous,&nbsp;Adam Vanous,&nbsp;Ursula K. Frei,&nbsp;Thomas Lübberstedt","doi":"10.1002/cppb.20050","DOIUrl":null,"url":null,"abstract":"<p>Commercial maize hybrid production has corroborated the usefulness of producing inbred lines; however, the delivery of new lines has always been a major time constraint in breeding programs. Traditional methods for developing inbred lines typically require 6 to 10 generations of self-pollination to obtain sufficient homozygosity. To bypass the time and costs associated with the development of inbred lines, doubled haploid (DH) systems have been widely adopted in the commercial production of maize. Within just two generations, DH systems can create completely homozygous and homogeneous lines. A typical maize DH system, utilizing anthocyanin markers <i>R1-nj</i> or <i>Pl1</i> for haploid selection, is described in this protocol. © 2017 by John Wiley &amp; Sons, Inc.</p>","PeriodicalId":10932,"journal":{"name":"Current protocols in plant biology","volume":"2 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cppb.20050","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current protocols in plant biology","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cppb.20050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 19

Abstract

Commercial maize hybrid production has corroborated the usefulness of producing inbred lines; however, the delivery of new lines has always been a major time constraint in breeding programs. Traditional methods for developing inbred lines typically require 6 to 10 generations of self-pollination to obtain sufficient homozygosity. To bypass the time and costs associated with the development of inbred lines, doubled haploid (DH) systems have been widely adopted in the commercial production of maize. Within just two generations, DH systems can create completely homozygous and homogeneous lines. A typical maize DH system, utilizing anthocyanin markers R1-nj or Pl1 for haploid selection, is described in this protocol. © 2017 by John Wiley & Sons, Inc.

玉米(Zea mays)双单倍体的传统方法研究
商业玉米杂交生产证实了生产自交系的有效性;然而,在育种计划中,新品种的交付一直是一个主要的时间限制。发展自交系的传统方法通常需要6至10代的自花授粉才能获得足够的纯合子。为了避免与自交系开发相关的时间和成本,双单倍体(DH)系统已广泛应用于玉米的商业生产。仅在两代内,DH系统就能产生完全纯合的同质系。本文描述了一个典型的玉米DH系统,利用花青素标记R1-nj或Pl1进行单倍体选择。©2017 by John Wiley &儿子,Inc。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current protocols in plant biology
Current protocols in plant biology Agricultural and Biological Sciences-Plant Science
自引率
0.00%
发文量
0
期刊介绍: Sound and reproducible laboratory methods are the foundation of scientific discovery. Yet nuances that are critical for an experiment''s success are not captured in the primary literature but exist only as part of a lab''s oral tradition. Current Protocols in Plant Biology provides reproducible step-by-step instructions for protocols relevant to plant research. Furthermore, Current Protocols content is thoughtfully organized by topic for optimal usage and to maximize contextual knowledge. Quarterly issues allow Current Protocols in Plant Biology to constantly evolve to keep pace with the newest discoveries and developments. Current Protocols in Plant Biology is the comprehensive source for protocols in the multidisciplinary field of plant biology, providing an extensive range of protocols from basic to cutting edge. Coverage includes: Extraction and analysis of DNA, RNA, proteins Chromosome analysis Transcriptional analysis Protein expression Metabolites Plant enzymology Epigenetics Plant genetic transformation Mutagenesis Arabidopsis, Maize, Poplar, Rice, and Soybean, and more.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信