The Finiteness Conjecture for the Joint Spectral Radius of a Pair of Matrices

Shuoting Wang, Jiechang Wen
{"title":"The Finiteness Conjecture for the Joint Spectral Radius of a Pair of Matrices","authors":"Shuoting Wang, Jiechang Wen","doi":"10.1109/CIS.2013.174","DOIUrl":null,"url":null,"abstract":"A set of matrices is said to have the finiteness property if the maximal rate of growth of long products of matrices taken from the set can be obtained by a periodic product. We study the finite-step realizability of the joint/generalized spectral radius of a pair of n × n square matrices. Let Σ = {A, B} where A,B are n × n matrices and B is a rank-one matrix. Then we have ρ(Σ)= max:t,s ρ(A<sup>t</sup>B<sup>s</sup>)<sup>1/(s+t)</sup>. That is to say, Σ have the finiteness property where the maximum is attained at (t, s) with the optimal sequence A<sup>t</sup>B<sup>s</sup>.","PeriodicalId":294223,"journal":{"name":"2013 Ninth International Conference on Computational Intelligence and Security","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Ninth International Conference on Computational Intelligence and Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIS.2013.174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

A set of matrices is said to have the finiteness property if the maximal rate of growth of long products of matrices taken from the set can be obtained by a periodic product. We study the finite-step realizability of the joint/generalized spectral radius of a pair of n × n square matrices. Let Σ = {A, B} where A,B are n × n matrices and B is a rank-one matrix. Then we have ρ(Σ)= max:t,s ρ(AtBs)1/(s+t). That is to say, Σ have the finiteness property where the maximum is attained at (t, s) with the optimal sequence AtBs.
矩阵对联合谱半径的有限性猜想
如果从矩阵集合中取矩阵的长积的最大增长速率可由周期积得到,则称该矩阵集合具有有限性质。研究了n × n方阵对的联合/广义谱半径的有限步可实现性。设Σ = {A, B},其中A,B为n × n个矩阵,B为一级矩阵。然后我们有ρ(Σ)= max:t,s ρ(AtBs)1/(s+t)也就是说,Σ具有有限性质,在(t, s)以最优序列AtBs达到最大值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信