On pain assessment from facial videos using spatio-temporal local descriptors

Ruijing Yang, Shujun Tong, Miguel Bordallo López, Elhocine Boutellaa, Jinye Peng, Xiaoyi Feng, A. Hadid
{"title":"On pain assessment from facial videos using spatio-temporal local descriptors","authors":"Ruijing Yang, Shujun Tong, Miguel Bordallo López, Elhocine Boutellaa, Jinye Peng, Xiaoyi Feng, A. Hadid","doi":"10.1109/IPTA.2016.7820930","DOIUrl":null,"url":null,"abstract":"Automatically recognizing pain from spontaneous facial expression is of increased attention, since it can provide for a direct and relatively objective indication to pain experience. Until now, most of the existing works have focused on analyzing pain from individual images or video-frames, hence discarding the spatio-temporal information that can be useful in the continuous assessment of pain. In this context, this paper investigates and quantifies for the first time the role of the spatio-temporal information in pain assessment by comparing the performance of several baseline local descriptors used in their traditional spatial form against their spatio-temporal counterparts that take into account the video dynamics. For this purpose, we perform extensive experiments on two benchmark datasets. Our results indicate that using spatio-temporal information to classify video-sequences consistently shows superior performance when compared against the one obtained using only static information.","PeriodicalId":123429,"journal":{"name":"2016 Sixth International Conference on Image Processing Theory, Tools and Applications (IPTA)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Sixth International Conference on Image Processing Theory, Tools and Applications (IPTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTA.2016.7820930","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

Automatically recognizing pain from spontaneous facial expression is of increased attention, since it can provide for a direct and relatively objective indication to pain experience. Until now, most of the existing works have focused on analyzing pain from individual images or video-frames, hence discarding the spatio-temporal information that can be useful in the continuous assessment of pain. In this context, this paper investigates and quantifies for the first time the role of the spatio-temporal information in pain assessment by comparing the performance of several baseline local descriptors used in their traditional spatial form against their spatio-temporal counterparts that take into account the video dynamics. For this purpose, we perform extensive experiments on two benchmark datasets. Our results indicate that using spatio-temporal information to classify video-sequences consistently shows superior performance when compared against the one obtained using only static information.
基于时空局部描述符的面部视频疼痛评估
从自发的面部表情中自动识别疼痛受到越来越多的关注,因为它可以提供对疼痛体验的直接和相对客观的指示。到目前为止,大多数现有的工作都集中在从单个图像或视频帧中分析疼痛,因此丢弃了在连续评估疼痛时有用的时空信息。在此背景下,本文通过比较传统空间形式中使用的几种基线局部描述符与考虑视频动态的时空对应物的性能,首次调查并量化了时空信息在疼痛评估中的作用。为此,我们在两个基准数据集上进行了广泛的实验。我们的研究结果表明,与仅使用静态信息获得的分类相比,使用时空信息对视频序列进行分类始终表现出优越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信