TSPA: Efficient Target-Stance Detection on Twitter

Evan M. Williams, K. Carley
{"title":"TSPA: Efficient Target-Stance Detection on Twitter","authors":"Evan M. Williams, K. Carley","doi":"10.1109/ASONAM55673.2022.10068608","DOIUrl":null,"url":null,"abstract":"Target-stance detection on large-scale datasets is a core component of many of the most common stance detection applications. However, despite progress in recent years, stance detection research primarily occurs at the document-level on small-scale data. We propose a highly efficient Twitter Stance Propagation Algorithm (TSPA) for detecting user-level stance on Twitter that leverages the social networks of Twitter users and runs in near-linear time. We find TSPA achieves SoTA accuracy against BERT, homogenous Graph Attention Networks (GAT), and heterogenous GAT baselines. Additionally, TSPA's wall-clock time was 10x faster than our best baseline on a GPU and over 100x faster than our best baseline on a CPU.","PeriodicalId":423113,"journal":{"name":"2022 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASONAM55673.2022.10068608","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Target-stance detection on large-scale datasets is a core component of many of the most common stance detection applications. However, despite progress in recent years, stance detection research primarily occurs at the document-level on small-scale data. We propose a highly efficient Twitter Stance Propagation Algorithm (TSPA) for detecting user-level stance on Twitter that leverages the social networks of Twitter users and runs in near-linear time. We find TSPA achieves SoTA accuracy against BERT, homogenous Graph Attention Networks (GAT), and heterogenous GAT baselines. Additionally, TSPA's wall-clock time was 10x faster than our best baseline on a GPU and over 100x faster than our best baseline on a CPU.
TSPA: Twitter上的高效目标姿态检测
大规模数据集上的目标姿态检测是许多最常见的姿态检测应用的核心组成部分。然而,尽管近年来取得了进展,但姿态检测研究主要发生在文档级别的小规模数据上。我们提出了一种高效的Twitter姿态传播算法(TSPA),用于检测Twitter上的用户级姿态,该算法利用Twitter用户的社交网络并在近线性时间内运行。我们发现TSPA在BERT、同质图注意网络(GAT)和异质图注意网络基线上达到了SoTA精度。此外,TSPA的时钟时间比我们在GPU上的最佳基线快10倍,比我们在CPU上的最佳基线快100倍以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信