BERT-fused Model for Finnish-Swedish Translation

I. Kumpulainen, J. Vankka
{"title":"BERT-fused Model for Finnish-Swedish Translation","authors":"I. Kumpulainen, J. Vankka","doi":"10.1109/SNAMS53716.2021.9731849","DOIUrl":null,"url":null,"abstract":"Translation between Finnish and Swedish is a common yet time-consuming and expensive task. In this paper, we train new neural machine translation models and compare them with publicly available tools for automatic translation of Finnish to Swedish. Furthermore, we analyze if fusing BERT models with traditional Transformer models produces better translations. We train a base Transformer and a large Transformer model using Fairseq and compare the results with BERT-fused versions of the models. Our large transformer model matches the state-of-the-art performance in Finnish-Swedish translation and slightly improves the BLEU score from 29.4 to 29.8. In our experiments, fusing the smaller Transformer model with a pre-trained BERT improves the quality of the translations. Surprisingly, the larger Transformer model in contrast does not benefit from being fused with a BERT model.","PeriodicalId":387260,"journal":{"name":"2021 Eighth International Conference on Social Network Analysis, Management and Security (SNAMS)","volume":"112 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Eighth International Conference on Social Network Analysis, Management and Security (SNAMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SNAMS53716.2021.9731849","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Translation between Finnish and Swedish is a common yet time-consuming and expensive task. In this paper, we train new neural machine translation models and compare them with publicly available tools for automatic translation of Finnish to Swedish. Furthermore, we analyze if fusing BERT models with traditional Transformer models produces better translations. We train a base Transformer and a large Transformer model using Fairseq and compare the results with BERT-fused versions of the models. Our large transformer model matches the state-of-the-art performance in Finnish-Swedish translation and slightly improves the BLEU score from 29.4 to 29.8. In our experiments, fusing the smaller Transformer model with a pre-trained BERT improves the quality of the translations. Surprisingly, the larger Transformer model in contrast does not benefit from being fused with a BERT model.
芬兰语-瑞典语翻译的bert融合模型
芬兰语和瑞典语之间的翻译是一项常见但耗时且昂贵的任务。在本文中,我们训练了新的神经机器翻译模型,并将它们与公开的芬兰语到瑞典语的自动翻译工具进行了比较。此外,我们分析了BERT模型与传统Transformer模型的融合是否会产生更好的翻译。我们使用Fairseq训练了一个基本Transformer和一个大型Transformer模型,并将结果与bert融合版本的模型进行了比较。我们的大型变压器模型与芬兰语-瑞典语翻译的最先进性能相匹配,并将BLEU分数从29.4略微提高到29.8。在我们的实验中,将较小的Transformer模型与预训练的BERT融合可以提高翻译的质量。令人惊讶的是,相比之下,较大的Transformer模型并没有从与BERT模型融合中获益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信