Tracking Dynamical Transition of Epileptic EEG Using Particle Filter

Hossein Mamaghanian, M. Shamsollahi, S. Hajipour
{"title":"Tracking Dynamical Transition of Epileptic EEG Using Particle Filter","authors":"Hossein Mamaghanian, M. Shamsollahi, S. Hajipour","doi":"10.1109/ISSPIT.2008.4775727","DOIUrl":null,"url":null,"abstract":"In this work we used the Liley EEG model as a dynamical model of EEG. Two parameters of the model which are candidates for change during an epileptic seizure are defined as new states in state space representation of this dynamical model. Then SIS particle filter is applied for estimating the defined states over time using the recorded epileptic EEG as the observation of the system. A method for fast numerical solution of the nonlinear coupled equation of the model is proposed. This model is used for tracking the dynamical properties of brain during epileptic seizure. Tracking the changes of these new defined states of the model have good information about the state transition of the model (interictal/preictal/ictal) and can be used in online monitoring algorithms for predicting seizures in epilepsy.","PeriodicalId":213756,"journal":{"name":"2008 IEEE International Symposium on Signal Processing and Information Technology","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Symposium on Signal Processing and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPIT.2008.4775727","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this work we used the Liley EEG model as a dynamical model of EEG. Two parameters of the model which are candidates for change during an epileptic seizure are defined as new states in state space representation of this dynamical model. Then SIS particle filter is applied for estimating the defined states over time using the recorded epileptic EEG as the observation of the system. A method for fast numerical solution of the nonlinear coupled equation of the model is proposed. This model is used for tracking the dynamical properties of brain during epileptic seizure. Tracking the changes of these new defined states of the model have good information about the state transition of the model (interictal/preictal/ictal) and can be used in online monitoring algorithms for predicting seizures in epilepsy.
基于粒子滤波的癫痫脑电动态转移跟踪
在这项工作中,我们采用了Liley脑电信号模型作为脑电信号的动态模型。在动态模型的状态空间表示中,将癫痫发作过程中可能发生变化的两个模型参数定义为新状态。然后利用记录的癫痫病脑电图作为系统的观测值,应用SIS粒子滤波估计随时间变化的定义状态。提出了一种模型非线性耦合方程的快速数值求解方法。该模型用于跟踪癫痫发作时大脑的动态特性。跟踪这些新定义的模型状态的变化,可以很好地了解模型的状态转换(间歇/前兆/前兆),并可用于预测癫痫发作的在线监测算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信