{"title":"Accurate Dynamic Scene Model for Moving Object Detection","authors":"Hong Yang, Yihua Tan, J. Tian, Jian Liu","doi":"10.1109/ICIP.2007.4379545","DOIUrl":null,"url":null,"abstract":"Adaptive pixel-wise Gaussian mixture model (GMM) is a popular method to model dynamic scenes viewed by a fixed camera. However, it is not a trivial problem for GMM to capture the accurate mean and variance of a complex pixel. This paper presents a two-layer Gaussian mixture model (TLGMM) of dynamic scenes for moving object detection. The first layer, namely real model, deals with gradually changing pixels specially; the second layer, called on-ready model, focuses on those pixels changing significantly and irregularly. TLGMM can represent dynamic scenes more accurately and effectively. Additionally, a long term and a short term variance are taken into account to alleviate the transparent problems faced by pixel-based methods.","PeriodicalId":131177,"journal":{"name":"2007 IEEE International Conference on Image Processing","volume":"138 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Conference on Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2007.4379545","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28
Abstract
Adaptive pixel-wise Gaussian mixture model (GMM) is a popular method to model dynamic scenes viewed by a fixed camera. However, it is not a trivial problem for GMM to capture the accurate mean and variance of a complex pixel. This paper presents a two-layer Gaussian mixture model (TLGMM) of dynamic scenes for moving object detection. The first layer, namely real model, deals with gradually changing pixels specially; the second layer, called on-ready model, focuses on those pixels changing significantly and irregularly. TLGMM can represent dynamic scenes more accurately and effectively. Additionally, a long term and a short term variance are taken into account to alleviate the transparent problems faced by pixel-based methods.