Multi-sensor Fusion for Stiffness Estimation to Assist Legged Robot Control in Unstructured Environment

Yue Gao, Huajian Wu, Mingdong Sun
{"title":"Multi-sensor Fusion for Stiffness Estimation to Assist Legged Robot Control in Unstructured Environment","authors":"Yue Gao, Huajian Wu, Mingdong Sun","doi":"10.1109/ROBIO55434.2022.10011688","DOIUrl":null,"url":null,"abstract":"Legged robot is designed for more flexibility when navigating in complex unstructured environment. When the end-effectors of the robot contacting non-rigid ground, the robot sinks due to different stiffness of the ground. This presents a challenge for accurate and robust control of the upper platform. In this paper, a real-time muti-sensor fusion method Dual Parallelizable Particle Filter (DPPF) is proposed to estimate ground stiffness. DPPF utilized RGB-D camera, IMU and 3-DoF force sensors. Meanwhile, we established a ground material database and trained a real-time ground segmentation network to assist the stiffness estimation of the ground. Then the information of ground material is utilized as a prior distribution for DPPF to achieve faster stiffness estimation. The experiments on synthetic data and on six-legged robot show that DPPF has faster computing speed, fewer convergent steps than previous state estimation methods. The estimated stiffness can be utilized for legged robot impedance control, posture control and trajectory planning.","PeriodicalId":151112,"journal":{"name":"2022 IEEE International Conference on Robotics and Biomimetics (ROBIO)","volume":"696 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Robotics and Biomimetics (ROBIO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBIO55434.2022.10011688","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Legged robot is designed for more flexibility when navigating in complex unstructured environment. When the end-effectors of the robot contacting non-rigid ground, the robot sinks due to different stiffness of the ground. This presents a challenge for accurate and robust control of the upper platform. In this paper, a real-time muti-sensor fusion method Dual Parallelizable Particle Filter (DPPF) is proposed to estimate ground stiffness. DPPF utilized RGB-D camera, IMU and 3-DoF force sensors. Meanwhile, we established a ground material database and trained a real-time ground segmentation network to assist the stiffness estimation of the ground. Then the information of ground material is utilized as a prior distribution for DPPF to achieve faster stiffness estimation. The experiments on synthetic data and on six-legged robot show that DPPF has faster computing speed, fewer convergent steps than previous state estimation methods. The estimated stiffness can be utilized for legged robot impedance control, posture control and trajectory planning.
多传感器融合刚度估计辅助腿式机器人非结构环境控制
腿式机器人是为了在复杂的非结构化环境中更灵活地导航而设计的。当机器人末端执行器接触非刚性地面时,由于地面刚度的不同,机器人会发生下沉。这对上部平台的精确和鲁棒控制提出了挑战。提出了一种基于双并行粒子滤波(Dual Parallelizable Particle Filter, DPPF)的实时多传感器融合地面刚度估计方法。DPPF采用RGB-D摄像头、IMU和3自由度力传感器。同时,我们建立了地面材料数据库,训练了实时地面分割网络,以辅助地面刚度估计。然后利用地面材料信息作为DPPF的先验分布,实现更快的刚度估计。在合成数据和六足机器人上的实验表明,DPPF算法比以往的状态估计方法具有更快的计算速度和更少的收敛步骤。估计的刚度可用于腿式机器人的阻抗控制、姿态控制和轨迹规划。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信