T-PIM: A 2.21-to-161.08TOPS/W Processing-In-Memory Accelerator for End-to-End On-Device Training

Jaehoon Heo, Junsoo Kim, Won-Ok Han, Sukbin Lim, Joo-Young Kim
{"title":"T-PIM: A 2.21-to-161.08TOPS/W Processing-In-Memory Accelerator for End-to-End On-Device Training","authors":"Jaehoon Heo, Junsoo Kim, Won-Ok Han, Sukbin Lim, Joo-Young Kim","doi":"10.1109/CICC53496.2022.9772808","DOIUrl":null,"url":null,"abstract":"As the number of edge devices grows to tens of billions, the importance of intelligent computing has been shifted from cloud datacenters to edge devices. On-device training, which enables the personalization of a machine learning (ML) model for each user, is crucial in the success of edge intelligence. However, battery-powered edge devices cannot afford huge computations and memory accesses involved in the training. Processing-in-Memory (PIM) is a promising technology to overcome the memory bandwidth and energy problem by combining processing logic into the memory. Many PIM chips [1]–[5] have accelerated ML inference using analog or digital-based logic with sparsity handling. Two-way transpose PIM [6] supports backpropagation, but it lacks gradient calculation and weight update, required for end-to-end ML training.","PeriodicalId":415990,"journal":{"name":"2022 IEEE Custom Integrated Circuits Conference (CICC)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Custom Integrated Circuits Conference (CICC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICC53496.2022.9772808","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

As the number of edge devices grows to tens of billions, the importance of intelligent computing has been shifted from cloud datacenters to edge devices. On-device training, which enables the personalization of a machine learning (ML) model for each user, is crucial in the success of edge intelligence. However, battery-powered edge devices cannot afford huge computations and memory accesses involved in the training. Processing-in-Memory (PIM) is a promising technology to overcome the memory bandwidth and energy problem by combining processing logic into the memory. Many PIM chips [1]–[5] have accelerated ML inference using analog or digital-based logic with sparsity handling. Two-way transpose PIM [6] supports backpropagation, but it lacks gradient calculation and weight update, required for end-to-end ML training.
T-PIM:一个用于端到端设备上训练的2.21到161.08 tops /W内存处理加速器
随着边缘设备的数量增长到数百亿,智能计算的重要性已经从云数据中心转移到边缘设备。设备上的培训可以为每个用户实现机器学习(ML)模型的个性化,这对于边缘智能的成功至关重要。然而,电池供电的边缘设备无法承担训练中涉及的大量计算和内存访问。内存中处理(PIM)是一种很有前途的技术,它通过将处理逻辑集成到内存中来克服内存带宽和能量问题。许多PIM芯片[1]-[5]使用基于稀疏性处理的模拟或数字逻辑加速ML推理。双向转置PIM[6]支持反向传播,但缺乏端到端ML训练所需的梯度计算和权值更新。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信