Visualization of Brain Dynamics based on the Robust Approach of Blind Signal Separation

Y. Konno, Jianting Cao, T. Takeda, H. Endo, M. Tanaka
{"title":"Visualization of Brain Dynamics based on the Robust Approach of Blind Signal Separation","authors":"Y. Konno, Jianting Cao, T. Takeda, H. Endo, M. Tanaka","doi":"10.1109/DEST.2007.372037","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a robust approach of noisy blind source separation to visualize the dynamics of brain activities. To decompose the brain waves from noisy observation with high power of outliers, we propose a scale-free approach of blind source separation. Applying the proposed approach to the single-trial phantom data and AEF data, we evaluate the effectiveness of our proposed approach and visualize the dynamics of brain activities, which is impossible when analyzing the averaged data.","PeriodicalId":448012,"journal":{"name":"2007 Inaugural IEEE-IES Digital EcoSystems and Technologies Conference","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 Inaugural IEEE-IES Digital EcoSystems and Technologies Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DEST.2007.372037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose a robust approach of noisy blind source separation to visualize the dynamics of brain activities. To decompose the brain waves from noisy observation with high power of outliers, we propose a scale-free approach of blind source separation. Applying the proposed approach to the single-trial phantom data and AEF data, we evaluate the effectiveness of our proposed approach and visualize the dynamics of brain activities, which is impossible when analyzing the averaged data.
基于盲信号分离鲁棒方法的脑动力学可视化
在本文中,我们提出了一种鲁棒的噪声盲源分离方法来可视化大脑活动的动态。为了利用高功率异常值对噪声观测中的脑电波进行分解,提出了一种无标度盲源分离方法。将所提出的方法应用于单次试验幻像数据和AEF数据,我们评估了所提出方法的有效性,并将大脑活动的动态可视化,这在分析平均数据时是不可能的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信