Speech Recognition Using Sparse Discrete Wavelet Decomposition Feature Extraction

J. Dai, V. Vijayarajan, Xuan Peng, Li Tan, Jean Jiang
{"title":"Speech Recognition Using Sparse Discrete Wavelet Decomposition Feature Extraction","authors":"J. Dai, V. Vijayarajan, Xuan Peng, Li Tan, Jean Jiang","doi":"10.1109/EIT.2018.8500254","DOIUrl":null,"url":null,"abstract":"In this paper, a new feature extraction algorithm for speech recognition using sparse discrete wavelet decomposition (SDWD) is proposed. The recognition system contains the following stages: speech data acquisition and preprocessing, speech signal decomposition using the SDWD, feature extraction, and artificial neural network (ANN) classifier. The task of the developed SDWD is to decompose speech signal into band signals based on on the Mel filter bank frequency specifications. Similar to the Mel frequency cepstral coefficient (MFCC) method, the logarithmic values of the filter bank energies are computed and then a discrete cosine transform (DCT) is applied to these logarithmic values to extract the feature. Our experimental results using the ANN classifier demonstrate that our proposed SDWD feature extraction algorithm outperforms over the MFCC and discrete wavelet packet transform (DWPT) algorithms.","PeriodicalId":188414,"journal":{"name":"2018 IEEE International Conference on Electro/Information Technology (EIT)","volume":"433 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Electro/Information Technology (EIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EIT.2018.8500254","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In this paper, a new feature extraction algorithm for speech recognition using sparse discrete wavelet decomposition (SDWD) is proposed. The recognition system contains the following stages: speech data acquisition and preprocessing, speech signal decomposition using the SDWD, feature extraction, and artificial neural network (ANN) classifier. The task of the developed SDWD is to decompose speech signal into band signals based on on the Mel filter bank frequency specifications. Similar to the Mel frequency cepstral coefficient (MFCC) method, the logarithmic values of the filter bank energies are computed and then a discrete cosine transform (DCT) is applied to these logarithmic values to extract the feature. Our experimental results using the ANN classifier demonstrate that our proposed SDWD feature extraction algorithm outperforms over the MFCC and discrete wavelet packet transform (DWPT) algorithms.
基于稀疏离散小波分解的语音识别特征提取
提出了一种基于稀疏离散小波分解(SDWD)的语音识别特征提取算法。该识别系统包括以下几个阶段:语音数据采集与预处理、语音信号SDWD分解、特征提取、人工神经网络分类器。所开发的SDWD的任务是根据Mel滤波器组的频率规范将语音信号分解成带信号。与Mel频率倒谱系数(MFCC)方法类似,计算滤波器组能量的对数值,然后对这些对数值进行离散余弦变换(DCT)以提取特征。我们使用人工神经网络分类器的实验结果表明,我们提出的SDWD特征提取算法优于MFCC和离散小波包变换(DWPT)算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信