Computing Horn Strong Backdoor Sets Thanks to Local Search

Lionel Paris, R. Ostrowski, P. Siegel, L. Sais
{"title":"Computing Horn Strong Backdoor Sets Thanks to Local Search","authors":"Lionel Paris, R. Ostrowski, P. Siegel, L. Sais","doi":"10.1109/ICTAI.2006.43","DOIUrl":null,"url":null,"abstract":"In this paper, a new approach for computing strong backdoor sets of Boolean formula in conjunctive normal form (CNF) is proposed. It makes an original use of local search techniques for finding an assignment leading to a largest renamable Horn sub-formula of a given CNF. More precisely, at each step, preference is given to variables such that when assigned to the opposite value lead to the smallest number of remaining non-Horn clauses. Consequently, if no positive or non Horn clauses remain in the formula, our approach answer the satisfiability of the original formula; otherwise, a smallest non-Horn sub-formula is used to extract the set of variables (strong backdoor) such that when assigned leads to a tractable sub-formula. Branching on the variables of the strong backdoor set leads to significant improvements of Zchaff SAT solver with respect to many real worlds SAT instances","PeriodicalId":169424,"journal":{"name":"2006 18th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'06)","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 18th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2006.43","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

In this paper, a new approach for computing strong backdoor sets of Boolean formula in conjunctive normal form (CNF) is proposed. It makes an original use of local search techniques for finding an assignment leading to a largest renamable Horn sub-formula of a given CNF. More precisely, at each step, preference is given to variables such that when assigned to the opposite value lead to the smallest number of remaining non-Horn clauses. Consequently, if no positive or non Horn clauses remain in the formula, our approach answer the satisfiability of the original formula; otherwise, a smallest non-Horn sub-formula is used to extract the set of variables (strong backdoor) such that when assigned leads to a tractable sub-formula. Branching on the variables of the strong backdoor set leads to significant improvements of Zchaff SAT solver with respect to many real worlds SAT instances
计算角强后门集得益于本地搜索
提出了一种计算合范式布尔公式强后门集的新方法。它独创地使用了局部搜索技术来寻找一个赋值,该赋值导致给定CNF的最大可重命名霍恩子公式。更准确地说,在每个步骤中,优先考虑这样的变量,当赋值为相反值时,会导致剩余的非霍恩子句数量最少。因此,如果公式中没有正数或非霍恩子句,我们的方法回答了原公式的可满足性;否则,使用最小的非霍恩子公式来提取变量集(强后门),这样当分配时会导致可处理的子公式。在强后门集变量上的分支导致Zchaff SAT求解器相对于许多真实世界的SAT实例的显著改进
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信