Yolo-SG: Salience-Guided Detection Of Small Objects In Medical Images

Rong Han, Xiaohong Liu, Ting Chen
{"title":"Yolo-SG: Salience-Guided Detection Of Small Objects In Medical Images","authors":"Rong Han, Xiaohong Liu, Ting Chen","doi":"10.1109/ICIP46576.2022.9898077","DOIUrl":null,"url":null,"abstract":"Object detection, a crucial component of medical image analysis, provides physicians with an interpretable auxiliary diagnostic basis. Although existing object detection models have had great success with natural images, the growing resolution of medical images makes the problem especially challenging because of the increased expectations to exploit the image details and discover small targets in images. For instance, lesions are occasionally diminutive relative to high-resolution medical images. To address this problem, we present YOLO-SG, a salience-guided (SG) deep learning model that improves small object detection by attending to detailed regions via a generated salience map. YOLO-SG performs two rounds of detection: coarse detection and salience-guided detection. In the first round of coarse detection, YOLO-SG detects objects using a deep convolutional detection model and proposes a salience map utilizing the context surrounding objects to guide the subsequent round of detection. In the second round, YOLO-SG extracts salient regions from the original input image based on the generated salience map and combines local detail with global context information to improve the object detection performance. The experimental results demonstrate that YOLO-SG outperforms the state-of-the-art models, especially when detecting small objects.","PeriodicalId":387035,"journal":{"name":"2022 IEEE International Conference on Image Processing (ICIP)","volume":"100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP46576.2022.9898077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Object detection, a crucial component of medical image analysis, provides physicians with an interpretable auxiliary diagnostic basis. Although existing object detection models have had great success with natural images, the growing resolution of medical images makes the problem especially challenging because of the increased expectations to exploit the image details and discover small targets in images. For instance, lesions are occasionally diminutive relative to high-resolution medical images. To address this problem, we present YOLO-SG, a salience-guided (SG) deep learning model that improves small object detection by attending to detailed regions via a generated salience map. YOLO-SG performs two rounds of detection: coarse detection and salience-guided detection. In the first round of coarse detection, YOLO-SG detects objects using a deep convolutional detection model and proposes a salience map utilizing the context surrounding objects to guide the subsequent round of detection. In the second round, YOLO-SG extracts salient regions from the original input image based on the generated salience map and combines local detail with global context information to improve the object detection performance. The experimental results demonstrate that YOLO-SG outperforms the state-of-the-art models, especially when detecting small objects.
Yolo-SG:医学图像中小目标的显著性引导检测
目标检测是医学图像分析的重要组成部分,为医生提供了可解释的辅助诊断依据。尽管现有的目标检测模型在自然图像上取得了巨大的成功,但医学图像分辨率的不断提高使得这一问题尤其具有挑战性,因为人们对利用图像细节和发现图像中的小目标的期望越来越高。例如,相对于高分辨率的医学图像,病变有时很小。为了解决这个问题,我们提出了YOLO-SG,这是一种显著性引导(SG)深度学习模型,通过生成显著性地图来关注详细区域,从而提高小目标检测。YOLO-SG进行两轮检测:粗检测和显著性引导检测。在第一轮粗检测中,YOLO-SG使用深度卷积检测模型检测物体,并利用物体周围的上下文提出显著性地图来指导后续的检测。在第二轮中,YOLO-SG基于生成的显著性图从原始输入图像中提取显著区域,并将局部细节与全局上下文信息相结合,提高目标检测性能。实验结果表明,YOLO-SG的性能优于现有的模型,特别是在检测小目标时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信