Almost lossless analog compression without phase information - complex case

G. Tauböck, Erwin Riegler
{"title":"Almost lossless analog compression without phase information - complex case","authors":"G. Tauböck, Erwin Riegler","doi":"10.1109/ITWF.2015.7360796","DOIUrl":null,"url":null,"abstract":"We extend the recently proposed information-theoretic framework for phase retrieval [1] to the complex case. Specifically, we consider the problem of recovering an unknown random vector x ∈ ℂn up to an overall phase factor from ⌊Rn⌋ phaseless measurements with compression rate R and derive a general achievability bound for R. Although phase retrieval is known not to extend straightforwardly from the real to the complex case, our bound on the compression rate turns out to be conceptually similar to the one derived for real-valued signals [1]. For x being s-sparse our results imply that 2s phaseless measurements are sufficient to recover x up to an overall phase factor irrespectively of the specific distribution of x. The best known recovery threshold for deterministic complex-valued s-sparse vectors is 4s - 2 so far.","PeriodicalId":281890,"journal":{"name":"2015 IEEE Information Theory Workshop - Fall (ITW)","volume":"45 22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Information Theory Workshop - Fall (ITW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITWF.2015.7360796","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We extend the recently proposed information-theoretic framework for phase retrieval [1] to the complex case. Specifically, we consider the problem of recovering an unknown random vector x ∈ ℂn up to an overall phase factor from ⌊Rn⌋ phaseless measurements with compression rate R and derive a general achievability bound for R. Although phase retrieval is known not to extend straightforwardly from the real to the complex case, our bound on the compression rate turns out to be conceptually similar to the one derived for real-valued signals [1]. For x being s-sparse our results imply that 2s phaseless measurements are sufficient to recover x up to an overall phase factor irrespectively of the specific distribution of x. The best known recovery threshold for deterministic complex-valued s-sparse vectors is 4s - 2 so far.
无相位信息的几乎无损模拟压缩-复杂情况
我们将最近提出的相位检索信息理论框架[1]扩展到复杂情况。具体来说,我们考虑从具有压缩率R的⌊Rn⌋无相测量中恢复一个未知随机向量x∈n到一个总相位因子的问题,并推导出R的一般可实现性界。尽管相位检索已知不能直接从实数情况扩展到复数情况,但我们的压缩率界在概念上与实值信号的压缩率界相似[1]。对于s-稀疏的x,我们的结果意味着,无论x的具体分布如何,2s无相测量足以恢复x到总体相位因子。到目前为止,最著名的确定性复值s-稀疏向量的恢复阈值是4s - 2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信