Multi-Aspect Embedding of Dynamic Graphs

Aimin Sun, Zhiguo Gong
{"title":"Multi-Aspect Embedding of Dynamic Graphs","authors":"Aimin Sun, Zhiguo Gong","doi":"10.1145/3511808.3557650","DOIUrl":null,"url":null,"abstract":"Graph embedding is regarded as one of the most advanced techniques for graph data analyses due to its significant performance. However, the majority of existing works only focus on static graphs while ignoring the ubiquitous dynamic graphs. In fact, the temporal evolution of edges in a dynamic graph sets a harsh challenge for the traditional embedding algorithms. To solve the problem, in this paper we propose a Dynamic Graph Multi-Aspect Embedding (DGMAE) to automatically learn the proper number of aspects and their distributions in each temporal duration based on a distance dependent Chinese Restaurant Process. The proposed method can encode the inherent property of varying interactions among nodes along the time and present different aspect-influences to nodes embedding. Our extensive experiments on several public datasets show the performance improvement over state-of-the-art works.","PeriodicalId":389624,"journal":{"name":"Proceedings of the 31st ACM International Conference on Information & Knowledge Management","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 31st ACM International Conference on Information & Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3511808.3557650","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Graph embedding is regarded as one of the most advanced techniques for graph data analyses due to its significant performance. However, the majority of existing works only focus on static graphs while ignoring the ubiquitous dynamic graphs. In fact, the temporal evolution of edges in a dynamic graph sets a harsh challenge for the traditional embedding algorithms. To solve the problem, in this paper we propose a Dynamic Graph Multi-Aspect Embedding (DGMAE) to automatically learn the proper number of aspects and their distributions in each temporal duration based on a distance dependent Chinese Restaurant Process. The proposed method can encode the inherent property of varying interactions among nodes along the time and present different aspect-influences to nodes embedding. Our extensive experiments on several public datasets show the performance improvement over state-of-the-art works.
动态图的多面向嵌入
图嵌入由于其显著的性能被认为是最先进的图数据分析技术之一。然而,现有的大多数作品只关注静态图形,而忽略了无处不在的动态图形。事实上,动态图中边的时间演化对传统的嵌入算法提出了严峻的挑战。为了解决这一问题,本文提出了一种动态图多方面嵌入(DGMAE)方法,该方法基于距离依赖的中国餐馆过程,自动学习各个时间段内的适当数量的方面及其分布。该方法可以对节点间随时间变化的相互作用的固有属性进行编码,并对节点嵌入表现出不同的方面影响。我们在几个公共数据集上进行了广泛的实验,表明性能优于最先进的作品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信