Exploring the Effectiveness of GRU Model with SIELU Activation Function for Water Quality Classification

Abdullahi Abdi Abubakar Hassan, Nordiana Rahim, R. Ghazali, N. Murli
{"title":"Exploring the Effectiveness of GRU Model with SIELU Activation Function for Water Quality Classification","authors":"Abdullahi Abdi Abubakar Hassan, Nordiana Rahim, R. Ghazali, N. Murli","doi":"10.1109/ICCSCE58721.2023.10237140","DOIUrl":null,"url":null,"abstract":"Accurate water quality classification is crucial for effective environmental monitoring and resource management. This research investigates the efficacy of the Gaussian Error Linear Unit with Sigmoid (SIELU) activation function in a Gated Recurrent Unit (GRU) model for improved water quality classification accuracy. Specifically focusing on Hong Kong rivers, this study justifies the dataset selection due to its consistent historical data, minimal missing values, and diverse parameters encompassing classifications of good, fair, and poor. By leveraging the unique properties of the SIELU activation function, the proposed SIELU-GRU model aims to enhance the GRU’s performance and generalization capabilities in the context of Hong Kong water quality classification. The research includes rigorous experimentation and analysis, comparing the proposed model with the existing approach, the Gaussian Error Linear Unit (GELU) activation function. Results highlight the superior accuracy achieved by a small margin by the model that includes GELU activation function, indicating its potential for improving environmental monitoring systems, aiding decision-making processes, and facilitating resource management, compared to the model that includes SIELU activation function. This study contributes to advancements in water quality classification methodologies, ultimately benefiting the sustainability and well-being of water ecosystems in the world.","PeriodicalId":287947,"journal":{"name":"2023 IEEE 13th International Conference on Control System, Computing and Engineering (ICCSCE)","volume":"78 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 13th International Conference on Control System, Computing and Engineering (ICCSCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSCE58721.2023.10237140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate water quality classification is crucial for effective environmental monitoring and resource management. This research investigates the efficacy of the Gaussian Error Linear Unit with Sigmoid (SIELU) activation function in a Gated Recurrent Unit (GRU) model for improved water quality classification accuracy. Specifically focusing on Hong Kong rivers, this study justifies the dataset selection due to its consistent historical data, minimal missing values, and diverse parameters encompassing classifications of good, fair, and poor. By leveraging the unique properties of the SIELU activation function, the proposed SIELU-GRU model aims to enhance the GRU’s performance and generalization capabilities in the context of Hong Kong water quality classification. The research includes rigorous experimentation and analysis, comparing the proposed model with the existing approach, the Gaussian Error Linear Unit (GELU) activation function. Results highlight the superior accuracy achieved by a small margin by the model that includes GELU activation function, indicating its potential for improving environmental monitoring systems, aiding decision-making processes, and facilitating resource management, compared to the model that includes SIELU activation function. This study contributes to advancements in water quality classification methodologies, ultimately benefiting the sustainability and well-being of water ecosystems in the world.
带SIELU激活函数的GRU模型在水质分类中的有效性探讨
准确的水质分类对有效的环境监测和资源管理至关重要。本文研究了门控循环单元(GRU)模型中具有Sigmoid激活函数的高斯误差线性单元(SIELU)对提高水质分类精度的有效性。本研究特别关注香港河流,由于其历史数据一致,缺失值最小,以及包括好,一般和差分类的多种参数,因此证明了数据集选择的合理性。建议的SIELU-GRU模型利用SIELU激活功能的独特特性,旨在提高GRU在香港水质分类方面的表现和泛化能力。研究包括严格的实验和分析,将所提出的模型与现有的高斯误差线性单元(GELU)激活函数方法进行比较。结果强调,与包含SIELU激活函数的模型相比,包含GELU激活函数的模型以较小的幅度获得了更高的精度,表明其在改善环境监测系统、辅助决策过程和促进资源管理方面的潜力。本研究有助于水质分类方法的进步,最终有利于世界水生态系统的可持续性和福祉。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信