Qian Yang, Qinghe Du, Pinyi Ren, Li Sun, Yichen Wang, Gangming Lv
{"title":"Prediction based interference management and distributed trajectory regulation in amorphous cells","authors":"Qian Yang, Qinghe Du, Pinyi Ren, Li Sun, Yichen Wang, Gangming Lv","doi":"10.1109/WCNCW.2015.7122571","DOIUrl":null,"url":null,"abstract":"The amorphous cells have emerged as a new paradigm to meet the fast increasing wireless capacity and coverage demands. Compared with the traditional cellular networks with hexagon-based deployments, the amorphous cells support mobile base stations (MBS) to form dynamic cell topologies, which can adapt to the group-movement behaviors of network loads. These amorphous cells are required to be self-organized so as to facilitate distributed coordination between MBSs, whereby the operational costs can be effectively reduced. Moreover, the management of cochannel interferences needs to take MBSs' movement into account, which is the new challenge not encountered in traditional cellular networks. In this paper, we propose a distributed trajectory regulation algorithm aiming at enhancing the reliability of communications for multiple mobile-host (MH) groups, while not violating the required travel time budgets. For this purpose, we jointly consider the prediction of channel conflicts across MBSs', the channel collision costs, and cooperative channel allocation for trajectory control. Simulation evaluations show that our algorithm can well balance the reliability and travel time. The simulation results also demonstrate the reduction of failure rate for incoming calls compared with the conventional approach, especially when the network load is high.","PeriodicalId":123586,"journal":{"name":"2015 IEEE Wireless Communications and Networking Conference Workshops (WCNCW)","volume":"126 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Wireless Communications and Networking Conference Workshops (WCNCW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCNCW.2015.7122571","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
The amorphous cells have emerged as a new paradigm to meet the fast increasing wireless capacity and coverage demands. Compared with the traditional cellular networks with hexagon-based deployments, the amorphous cells support mobile base stations (MBS) to form dynamic cell topologies, which can adapt to the group-movement behaviors of network loads. These amorphous cells are required to be self-organized so as to facilitate distributed coordination between MBSs, whereby the operational costs can be effectively reduced. Moreover, the management of cochannel interferences needs to take MBSs' movement into account, which is the new challenge not encountered in traditional cellular networks. In this paper, we propose a distributed trajectory regulation algorithm aiming at enhancing the reliability of communications for multiple mobile-host (MH) groups, while not violating the required travel time budgets. For this purpose, we jointly consider the prediction of channel conflicts across MBSs', the channel collision costs, and cooperative channel allocation for trajectory control. Simulation evaluations show that our algorithm can well balance the reliability and travel time. The simulation results also demonstrate the reduction of failure rate for incoming calls compared with the conventional approach, especially when the network load is high.