A Resource-Efficient Method for Crawling Swarm Information in Multiple BitTorrent Networks

Masahiro Yoshida, A. Nakao
{"title":"A Resource-Efficient Method for Crawling Swarm Information in Multiple BitTorrent Networks","authors":"Masahiro Yoshida, A. Nakao","doi":"10.1109/ISADS.2011.72","DOIUrl":null,"url":null,"abstract":"Bit Torrent is one of the most popular P2P file sharing applications in the world. Each Bit Torrent network is called a swarm and millions of peers may join multiple swarms. Due to swarm's large network size and complexity, many resources (PC servers, the Internet connection, etc.) are required for measuring all the swarms in the world. For this reason, the existing work is forced to measure only a part of the entire set of swarms, thus, ends up understanding only a part of it. In this paper, we propose a resource-efficient method for crawling multiple Bit Torrent swarms by only a limited amount of resources such as a single PC server. In the proposed method, our crawler avoids collecting redundant information of swarms without pressing WAN access links nor expending much processing resources. We also use a number of techniques to efficiently crawl all the participating peers of multiple swarms. We crawl over 4.3 million unique .torrent files, small files that store metadata used in Bit Torrent, and 48,000 tracker addresses. We can crawl 4.3 million swarms within an hour. We obtain 24 swarm snapshots and 10 million unique peers in a day.","PeriodicalId":221833,"journal":{"name":"2011 Tenth International Symposium on Autonomous Decentralized Systems","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Tenth International Symposium on Autonomous Decentralized Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISADS.2011.72","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

Bit Torrent is one of the most popular P2P file sharing applications in the world. Each Bit Torrent network is called a swarm and millions of peers may join multiple swarms. Due to swarm's large network size and complexity, many resources (PC servers, the Internet connection, etc.) are required for measuring all the swarms in the world. For this reason, the existing work is forced to measure only a part of the entire set of swarms, thus, ends up understanding only a part of it. In this paper, we propose a resource-efficient method for crawling multiple Bit Torrent swarms by only a limited amount of resources such as a single PC server. In the proposed method, our crawler avoids collecting redundant information of swarms without pressing WAN access links nor expending much processing resources. We also use a number of techniques to efficiently crawl all the participating peers of multiple swarms. We crawl over 4.3 million unique .torrent files, small files that store metadata used in Bit Torrent, and 48,000 tracker addresses. We can crawl 4.3 million swarms within an hour. We obtain 24 swarm snapshots and 10 million unique peers in a day.
多bt网络中爬行群信息的资源高效方法
bittorrent是世界上最流行的P2P文件共享应用程序之一。每个Bit Torrent网络被称为一个群,数百万个节点可以加入多个群。由于swarm庞大的网络规模和复杂性,需要大量的资源(PC服务器、Internet连接等)来测量世界上所有的swarm。由于这个原因,现有的工作只能测量整个群体的一部分,因此,最终只能理解其中的一部分。在本文中,我们提出了一种资源高效的方法,仅通过有限的资源(如单个PC服务器)来爬行多个Bit Torrent群集。在此方法中,我们的爬虫避免了收集集群的冗余信息,而不需要按下WAN访问链路,也不需要消耗太多的处理资源。我们还使用了一些技术来有效地抓取多个集群的所有参与节点。我们抓取了超过430万个独特的。Torrent文件,存储Bit Torrent中使用的元数据的小文件,以及48,000个跟踪地址。我们可以在一小时内爬过430万个蜂群。我们每天获得24个集群快照和1000万个唯一的节点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信