Adapting information extraction knowledge for unseen Web sites

Tak-Lam Wong, Wai Lam
{"title":"Adapting information extraction knowledge for unseen Web sites","authors":"Tak-Lam Wong, Wai Lam","doi":"10.1109/ICDM.2002.1183995","DOIUrl":null,"url":null,"abstract":"We propose a wrapper adaptation framework which aims at adapting a learned wrapper to an unseen Web site. It significantly reduces human effort in constructing wrappers. Our framework makes use of extraction rules previously discovered from a particular site to seek potential training example candidates for an unseen site. Rule generalization and text categorization are employed for finding suitable example candidates. Another feature of our approach is that it makes use of the previously discovered lexicon to classify good training examples automatically for the new site. We conducted extensive experiments to evaluate the quality of the extraction performance and the adaptability of our approach.","PeriodicalId":405340,"journal":{"name":"2002 IEEE International Conference on Data Mining, 2002. Proceedings.","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2002 IEEE International Conference on Data Mining, 2002. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2002.1183995","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

We propose a wrapper adaptation framework which aims at adapting a learned wrapper to an unseen Web site. It significantly reduces human effort in constructing wrappers. Our framework makes use of extraction rules previously discovered from a particular site to seek potential training example candidates for an unseen site. Rule generalization and text categorization are employed for finding suitable example candidates. Another feature of our approach is that it makes use of the previously discovered lexicon to classify good training examples automatically for the new site. We conducted extensive experiments to evaluate the quality of the extraction performance and the adaptability of our approach.
为不可见的网站调整信息提取知识
我们提出了一个包装器自适应框架,该框架旨在使学习到的包装器适应未知的Web站点。它大大减少了构建包装器的人力。我们的框架利用先前从特定站点发现的提取规则来为未见过的站点寻找潜在的训练样例候选。使用规则泛化和文本分类来寻找合适的候选示例。我们的方法的另一个特点是,它利用之前发现的词汇,为新的站点自动分类好的训练样例。我们进行了大量的实验来评估提取性能的质量和我们的方法的适应性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信