Predictive models with end user preference

Yifan Zhao, Xian Yang, Carolina Bolnykh, Steve Harenberg, Nodirbek Korchiev, Saavan Raj Yerramsetty, Bhanu Prasad Vellanki, Ramakanth Kodumagulla, N. Samatova
{"title":"Predictive models with end user preference","authors":"Yifan Zhao, Xian Yang, Carolina Bolnykh, Steve Harenberg, Nodirbek Korchiev, Saavan Raj Yerramsetty, Bhanu Prasad Vellanki, Ramakanth Kodumagulla, N. Samatova","doi":"10.1002/sam.11545","DOIUrl":null,"url":null,"abstract":"Classical machine learning models typically try to optimize the model based on the most discriminatory features of the data; however, they do not usually account for end user preferences. In certain applications, this can be a serious issue as models not aware of user preferences could become costly, untrustworthy, or privacy‐intrusive to use, thus becoming irrelevant and/or uninterpretable. Ideally, end users with domain knowledge could propose preferable features that the predictive model could then take into account. In this paper, we propose a generic modeling method that respects end user preferences via a relative ranking system to express multi‐criteria preferences and a regularization term in the model's objective function to incorporate the ranked preferences. In a more generic perspective, this method is able to plug user preferences into existing predictive models without creating completely new ones. We implement this method in the context of decision trees and are able to achieve a comparable classification accuracy while reducing the use of undesirable features.","PeriodicalId":342679,"journal":{"name":"Statistical Analysis and Data Mining: The ASA Data Science Journal","volume":"363 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Analysis and Data Mining: The ASA Data Science Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/sam.11545","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Classical machine learning models typically try to optimize the model based on the most discriminatory features of the data; however, they do not usually account for end user preferences. In certain applications, this can be a serious issue as models not aware of user preferences could become costly, untrustworthy, or privacy‐intrusive to use, thus becoming irrelevant and/or uninterpretable. Ideally, end users with domain knowledge could propose preferable features that the predictive model could then take into account. In this paper, we propose a generic modeling method that respects end user preferences via a relative ranking system to express multi‐criteria preferences and a regularization term in the model's objective function to incorporate the ranked preferences. In a more generic perspective, this method is able to plug user preferences into existing predictive models without creating completely new ones. We implement this method in the context of decision trees and are able to achieve a comparable classification accuracy while reducing the use of undesirable features.
具有最终用户偏好的预测模型
经典的机器学习模型通常试图根据数据中最具歧视性的特征来优化模型;然而,它们通常不考虑最终用户的偏好。在某些应用程序中,这可能是一个严重的问题,因为不了解用户偏好的模型可能会变得昂贵、不可信或侵犯隐私,从而变得无关紧要和/或不可解释。理想情况下,具有领域知识的最终用户可以提出预测模型可以考虑的优选特征。在本文中,我们提出了一种通用的建模方法,该方法通过一个相对排名系统来表达多标准偏好,并在模型的目标函数中加入正则化项来包含排名偏好。从更一般的角度来看,该方法能够将用户偏好插入到现有的预测模型中,而无需创建全新的预测模型。我们在决策树的上下文中实现了这种方法,并且能够在减少不良特征的使用的同时达到相当的分类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信