Stochastic vs. BFGS Training in Neural Discrimination of RF-Modulation

M. Dima, M. Dima, M. Mihailescu
{"title":"Stochastic vs. BFGS Training in Neural Discrimination of RF-Modulation","authors":"M. Dima, M. Dima, M. Mihailescu","doi":"10.22323/1.429.0011","DOIUrl":null,"url":null,"abstract":"Neuromorphic classification of RF-Modulation type is an on-going topic in SIGINT applications. Neural network training approaches are varied, each being suited to a certain application. For exemplification I show the results for BFGS (Broyden-Fletcher-Goldfarb-Shanno) optimization in discriminating AM vs FM modulation and of stochastic optimization for the challenging case of AM-LSB vs. AM-USB (upper / lower sideband) discrimination. Although slower than BFGS, the stochastic training of a neural network avoids better local minima, obtaining a stable neurocore.","PeriodicalId":262901,"journal":{"name":"Proceedings of The 6th International Workshop on Deep Learning in Computational Physics — PoS(DLCP2022)","volume":"225 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of The 6th International Workshop on Deep Learning in Computational Physics — PoS(DLCP2022)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22323/1.429.0011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Neuromorphic classification of RF-Modulation type is an on-going topic in SIGINT applications. Neural network training approaches are varied, each being suited to a certain application. For exemplification I show the results for BFGS (Broyden-Fletcher-Goldfarb-Shanno) optimization in discriminating AM vs FM modulation and of stochastic optimization for the challenging case of AM-LSB vs. AM-USB (upper / lower sideband) discrimination. Although slower than BFGS, the stochastic training of a neural network avoids better local minima, obtaining a stable neurocore.
随机与BFGS训练在射频调制神经识别中的应用
射频调制类型的神经形态分类是SIGINT应用中一个不断发展的课题。神经网络训练方法多种多样,每一种都适合于特定的应用。举例来说,我展示了BFGS (Broyden-Fletcher-Goldfarb-Shanno)优化在分辨AM和FM调制方面的结果,以及随机优化在分辨AM- lsb和AM- usb(上/下边带)方面的结果。虽然比BFGS慢,但神经网络的随机训练避免了更好的局部极小值,获得了稳定的神经核。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信