Optimizing network lifetime for distributed tracking with wireless sensor networks

N. Roseveare, B. Natarajan
{"title":"Optimizing network lifetime for distributed tracking with wireless sensor networks","authors":"N. Roseveare, B. Natarajan","doi":"10.1145/2069087.2069094","DOIUrl":null,"url":null,"abstract":"We consider the challenging problem of distributed tracking using wireless sensor networks (WSN). In our scenario, multiple spatially distributed sensor nodes estimate a physical process (viz. a moving object) and transmit quantized state estimates to a central fusion node for processing. The fusion node utilizes a BLUE (Best Linear Unbiased Estimation) approach to combine the individual sensor estimates. In this paradigm the uncertainty of the final estimate is dependent on the quantization and transmit energy levels. This makes the problem particularly challenging since power and bandwidth are critically constrained resources in WSNs. Thus, the trade-off between estimation quality and network lifetime is inherent. This work optimizes resource utilization while constraining estimation performance. Two convex formulations of the resulting Mixed-Integer Non-Linear program (MINLP) are given. Unlike most previous work, this effort heuristically incorporates the operating states of the nodes into the optimal decisions. The heuristic accomplishes a redistribution of effort, tasking healthier nodes to contribute more resources to the estimation process. Simulation results are presented for the given formulations which demonstrate the effectiveness of the heuristic for extending network lifetime.","PeriodicalId":311005,"journal":{"name":"International Workshop on Performance Monitoring, Measurement, and Evaluation of Heterogeneous Wireless and Wired Networks","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Performance Monitoring, Measurement, and Evaluation of Heterogeneous Wireless and Wired Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2069087.2069094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We consider the challenging problem of distributed tracking using wireless sensor networks (WSN). In our scenario, multiple spatially distributed sensor nodes estimate a physical process (viz. a moving object) and transmit quantized state estimates to a central fusion node for processing. The fusion node utilizes a BLUE (Best Linear Unbiased Estimation) approach to combine the individual sensor estimates. In this paradigm the uncertainty of the final estimate is dependent on the quantization and transmit energy levels. This makes the problem particularly challenging since power and bandwidth are critically constrained resources in WSNs. Thus, the trade-off between estimation quality and network lifetime is inherent. This work optimizes resource utilization while constraining estimation performance. Two convex formulations of the resulting Mixed-Integer Non-Linear program (MINLP) are given. Unlike most previous work, this effort heuristically incorporates the operating states of the nodes into the optimal decisions. The heuristic accomplishes a redistribution of effort, tasking healthier nodes to contribute more resources to the estimation process. Simulation results are presented for the given formulations which demonstrate the effectiveness of the heuristic for extending network lifetime.
无线传感器网络分布式跟踪的网络寿命优化
我们考虑了利用无线传感器网络(WSN)进行分布式跟踪的挑战性问题。在我们的场景中,多个空间分布的传感器节点估计一个物理过程(即一个运动物体),并将量化状态估计传输到一个中央融合节点进行处理。融合节点利用BLUE(最佳线性无偏估计)方法来组合各个传感器的估计。在这种模式下,最终估计的不确定性取决于量子化能级和传输能级。这使得这个问题特别具有挑战性,因为功率和带宽在无线传感器网络中是严重受限的资源。因此,估计质量和网络生命周期之间的权衡是固有的。这项工作在约束估计性能的同时优化了资源利用。给出了所得到的混合整数非线性规划(MINLP)的两个凸表达式。与大多数以前的工作不同,这项工作启发式地将节点的操作状态合并到最优决策中。启发式算法完成了工作量的重新分配,将更健康的节点分配给估计过程,以贡献更多的资源。仿真结果表明,启发式算法对于延长网络寿命是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信